ZEOLIT, SI MURAH BERKHASIAT TINGGI UNTUK KEBUN SAWIT

Penelitian aplikasi zeolit dilakukan pada pembibitan kelapa sawit untuk mengetahui pengaruhnya terhadap medium tanam dan pertumbuhan serta serapan hara bibit kelapa sawit ....Readmore

MANFAAT ZEOLITE PADA TANAH, TANAMAN, TERNAK DAN TAMBAK

Dengan majunya penemuan teknologi, zeolite disebut dengan nama mineral serba guna, karena fungsinya yang sangat beraneka ragam, .... Readmore

NATURAL ZEOLITE FOR RADIATION PROTECTION

Toxic nuclear radiation is being spread all around our world due to many reactors malfunctioning or spilling their deadly load into the environment. Radiation can .... Readmore

MEMBUAT FILTER AIR SEDERHANA DENGAN ZEOLITE

Air merupakan kebutuhan yang sangat vital bagi kehidupan manusia. Karena itu jika kebutuhan akan air tersebut belum tercukupi maka dapat memberikan dampak .... Readmore

TZP Plus (Soil Conditioner)

Solusi memperbaiki lahan, meningkatkan produksi dan kualitas hasil pertanian. Terdaftar.....Readmore.


1:1 Traffic Exchange Yibbida operates a 1:1 traffic exchange system that is consistently generating web site traffic.
Showing posts with label Soil Nutrient. Show all posts
Showing posts with label Soil Nutrient. Show all posts

Wednesday, 23 October 2024

Efek Zeolite pada Tanaman Padi

 

Efek Zeolite pada Tanaman Padi

Zeolit, selain dikenal sebagai pembenah tanah, juga dapat berfungsi sebagai sumber silika bagi tanaman. Zeolit adalah mineral aluminosilikat yang mengandung sejumlah besar silika (SiO₂) dalam strukturnya, meskipun tidak larut dengan cepat seperti silika murni. Namun, dalam kondisi tertentu, zeolit dapat menjadi sumber silika yang efektif untuk tanaman. 

Silika (SiO₂) adalah salah satu unsur yang penting bagi tanaman, terutama padi. Meskipun bukan unsur hara esensial dalam arti bahwa tanaman bisa tetap hidup tanpa silika, namun manfaatnya sangat signifikan, terutama bagi tanaman padi. 

Berikut adalah efek positif silika pada tanaman padi: 
  • Peningkatan Ketahanan terhadap Hama dan Penyakit 
Silika memperkuat dinding sel tanaman padi, membuatnya lebih tahan terhadap serangan hama seperti wereng, penggerek batang, dan penyakit jamur seperti blast (pyricularia). Lapisan silika pada permukaan daun juga membuat permukaan daun lebih keras, sehingga lebih sulit ditembus oleh patogen atau serangga.
  • Pengurangan Serangan Patogen Jamur 
Silika membantu mencegah infeksi jamur dengan menciptakan lapisan pelindung di jaringan tanaman, khususnya di bagian daun dan batang. Ini membantu mengurangi risiko penyakit seperti bercak daun atau blast.

  •  Peningkatan Efisiensi Penyerapan Nutrisi 

Silika dapat membantu tanaman padi menyerap unsur hara lain dengan lebih baik, seperti nitrogen, fosfor, dan kalium. Ini terjadi karena silika meningkatkan kemampuan tanaman dalam melakukan fotosintesis, yang kemudian mendukung pertumbuhan secara keseluruhan.

  •  Toleransi terhadap Stres Abiotik 

Silika membantu tanaman padi menghadapi stres lingkungan seperti kekeringan, salinitas, dan cekaman suhu. Dengan memperkuat jaringan tanaman dan meningkatkan efisiensi penggunaan air, silika membuat tanaman lebih tahan terhadap kondisi yang kurang ideal.

  •  Meningkatkan Produksi dan Kualitas Gabah 

Peningkatan jumlah dan kualitas gabah adalah salah satu efek penting dari aplikasi silika. Silika dapat memperbaiki morfologi tanaman, membuat batang lebih tegak dan kuat sehingga mampu menopang gabah yang lebih berat. Ini juga membantu mengurangi risiko rebah (lodging), yang bisa menurunkan hasil panen.

  •  Pengurangan Efek Toksisitas Unsur Logam Berat 

Silika dapat mengurangi efek toksisitas logam berat seperti aluminium (Al) dan besi (Fe) yang bisa mengganggu pertumbuhan tanaman padi, terutama pada tanah yang masam. Silika membentuk senyawa tidak larut dengan logam berat tersebut, sehingga mengurangi dampaknya terhadap tanaman.
  • Meningkatkan Kualitas Fotosintesis 
Silika memperbaiki efisiensi fotosintesis dengan cara memperbaiki posisi daun, sehingga dapat lebih optimal menangkap sinar matahari. Tanaman padi yang kaya akan silika cenderung memiliki daun yang tegak, yang mengurangi terjadinya bayangan antar daun, sehingga meningkatkan laju fotosintesis.

Dengan berbagai manfaat tersebut, zeolite sebagai sumber silika sangat penting untuk meningkatkan produktivitas tanaman padi, menjaga kesehatan tanaman, dan meminimalkan penggunaan pestisida. Penggunaan pupuk silika atau bahan yang kaya silika, seperti zeolite dan abu sekam padi, semakin banyak digunakan dalam budidaya padi di berbagai negara.

Sunday, 6 October 2024

Pemupukan Tepat pada Tanaman Padi

Pemupukan Tepat pada Tanaman Padi

Untuk memahami pemupukan pada tanaman padi, kita harus mengetahui umur tanaman padi terlebih dahulu. Sekarang ini banyak varietas padi berumur genjah yang dilepas oleh pemerintah. 
Contoh, Inpari 10 berumur 108-116 hari dan Inpari 13 berumur 103 hari. Sedangkan padi ciherang dan IR 64 umumnya berumur 115 -125 hari. 
Dengan melihat dua kondisi yang berbeda ini, petani seringkali mengalami kesulitan untuk menentukan kapan waktu pemupukan yang tepat bagi keduanya. 
Teknik pemupukan tanaman padi memang sangat relatif, tidak ada ukuran secara pasti dosis dan waktu yang ditentukan, karena banyak sekali faktor yang harus diperhatikan. 
Struktur tanah dengan kondisi unsur hara yang berbeda-beda di tempat satu dengan yang lainnya, tentu juga memerlukan teknik yang berbeda dalam hal pemupukannya. 
Salah satu contoh dosis, jenis pupuk dan waktu pemupukan yang tepat pada tanaman padi adalah sebagai berikut: 
  • Pemupukan susulan pertama dilakukan saat padi berumur 7-10 HST. Pupuk yang digunakan adalah Urea 75 kg/ha, SP-36 100 kg/ha dan KCL 50 kg/ha. 
  • Pemupukan susulan kedua diberikan saat tanaman padi berumur 21 HST menggunakan pupuk Urea sebanyak 150 kg/ha. 
  • Pemupukan susulan ketiga pada saat umur padi 42 HST menggunakan 75 kg/ha Urea dan 50 kg/ha KCl. 
Dari tiga kali pemupukan tersebut, dalam satu musim tanam padi pada luasan 1 hektar membutuhkan pupuk Urea (Nitogen) 300 kg, SP36/TSP (Phospor) 100 kg, dan KCl (Kalium) 100 kg. 
Tanaman padi memerlukan banyak hara N dibanding hara P ataupun K. Pupuk Urea perlu diberikan sebanyak 3 kali, agar pemberian pupuk N menjadi lebih efisien terserap oleh tanaman padi. Sedangkan pemberian pupuk KCl dilakukan 2 kali, agar proses pengisian gabah menjadi lebih baik. 
Untuk memantau kecukupan pupuk Urea (Nitrogen) pada tanaman padi bisa menggunakan Bagan Warna Daun (BWD). Pada alat ini terdapat empat kotak skala warna, mulai warna hijau muda hingga hijau tua, yang menggambarkan tingkat kehijauan daun tanaman padi. 
Sebagai contoh, jika daun tanaman berwarna hijau muda berarti tanaman kekurangan hara N sehingga perlu dipupuk. 
Sebaliknya, jika daun berwarna hijau tua atau tingkat kehijauan daun sama dengan warna dikotak skala 4 pada BWD berarti tanaman sudah memiliki hara N yang cukup sehingga tidak perlu lagi dipupuk. 
Monitoring pemberian pupuk dengan alat BWD dilakukan sejak 14 HST sampai fase berbunga (63 HST) setiap 7 hari sekali. 
Hasil penelitian menunjukkan, pemakaian BWD dalam kegiatan pemupukan N dapat menghemat penggunaan pupuk urea sebanyak 15-20 % dari takaran yang umum digunakan petani padi tanpa menurunkan hasil. 
Sementara itu, hara P dan K tidak perlu diberikan setiap musim. Hara P dapat diberikan tiap 4 musim sekali sedangkan hara K dapat diberikan setiap 6 musim sekali. Ini disebabkan karena pupuk P dan K yang telah diaplikasikan hanya ± 20 % dan ± 30 % nya terserap tanaman sedangkan sisanya terakumulasi dalam tanah. 
Selain pupuk kimia di atas, sangat dianjurkan untuk menambahkan pemberian pupuk pembenah tanah. Pupuk pembenah tanah yang dianjurkan berupa pupuk zeolite aktif yang memiliki KTK minimal 80 mq/100gr sebanyak 500 kg sd 1 ton ton per hektar setiap musim. 
Penggunaan pupuk zeolite aktif ini dapat mengembalikan sifat-sifat tanah, memperbaiki struktur tanah, meningkatkan kesuburan serta menggemburkan tanah yang telah padat karena efek penggunaan pupuk anorganik atau pupuk kimia.

Tuesday, 29 April 2014

Manfaat Mineral Zeolit untuk Bidang Perikanan

Manfaat Mineral Zeolit untuk Bidang Perikanan
Produk natural mineral zeolite selain dapat digunakan untuk meningkatkan effektifitas pemupukan dalam bidang pertanian, juga dapat dimanfaatkan sebagai media pengolah tanah dasar tambak/kolam berperan dalam hal :

  1. Menyerap dan menukar senyawa kimmia yang meracuni air tambak/kolam seperti N2,NH3 ( Amoniak ) , H2S, COD , BOD dan CO2 
  2. Menigktkan kada Oksigen ( O2) 
  3. Menetralisir keasaman tanah dasar tambak/kolam dan merangsang pertumbuhan plankton 
Selain itu produk miineral Zeolit ini apt berfungis

  1. Menjaga stabiitas air tambak/kolam pada tingkat ideal 
  2. Meningkatkan nafsu makan bagi udang/ikan dan mengefektifikan pemakaian pakan 
  3. Menyehatkan dan menurunkan tingkat kematian udang/ikan 
  4. Meningkatkan kuantitas dan kualitas produksi udang/ikan 
  5. Menurunkan polusi/tingkat pencemaran yang timbul dari kotoran dan sisa pakan yang membusuk
Natural mineral zeolite juga dapat dipakai sebagai penyerap atau pengontrol Amonium yang dikeluarkan udang/ikan setelah mereka diberi makan .
Bila hal tersebut tidak dikontrol , jumlah amonium yang terkumpul akan meracuni udang/ikan tersebut.
Dengan pemakaian natural mineral zeolite pada ruang yang sama maka jumlah udang/ikan yang dpat dipelihara dapat lebih banyak.

Dosis Pemakaian mineral Zeolit pada tambak/kolam 
Dosis pemakain zeolit pada tambak udang / ikan

  1. Untuk keprluan Reklamasi Tambak ( Pembenihan Ulang Pada Tambak adalah - 1 ton s/d 2 ton per hektar tambak 
  2. Untuk Perawatan Tambak : - 50 kg s/d 100 kg perminggu per petak , selama perawatan 3 bulan ( ukuran petak : 2.500 m2 s/d 3.000 m2 ) 
  3. Untuk Treatment ( Perlakuan apabila ada udang atau ikan sakit : - 200 kg / petak dengan tujuan untuk mengurangi kemungkinan efek racun dari gas H2S dan lain-lain dari pembusukan sisa pakan pada tambak tersebut.

Sunday, 13 April 2014

Zeolit, Bahan Pembenah Tanah

Mesin Pembakaran Zeolite Granular
Tanaman padi merupakan sumber pokok bahan pangan di Indonesia. Dengan demikian areal pertanaman padi paling banyak mengalami degradasi tingkat kesuburan. Kesuburan ini dapat digolongkan dalam tiga kelompok yaitu: kesuburan fisika, kimia dan biologi. Menurunnya kesuburan lahan pertanaman padi merupakan ancaman bagi kelanjutan ketersediaan pangan secara nasional. 

Untuk mengatasi menurunnya kesuburan tanah ada beberapa cara yang bisa dilakukan. Termasuk dengan cara memberikan bahan pembenah tanah. Bahan pembenah tanah ini antara lain adalah batuan alami zeolit.  

Batuan zeolit adalah mineral alami berbahan dasar kelompok alumunium silikat yang terhidrasi logam alkali dan alkali tanah (terutama Na dan Ca). Batuan ini berwama abu-abu sampai kebiru-biruan. Para ahli mineralogi menyatakan zeolit mengandung lebih dari 30 mineral alami. Diantaranya: Natrolit, Thomsonit, Analit, Hendalit, Clinoptilotit dan Mordernit

Abu Vulkanis 

Mineral ini berasal dari tufa abu vulkanis. Pertama kali ditemukan oleh mineralogist Swedia, Axel Frederick Crontstedt. Nama zeolit sendiri berasal dari bahasa Latin yang artinya batu yang mendidih. Karena salah satu karakternya melepas air yang dikandungnya waktu dipanaskan sehingga nampak seperti batu yang mendidih. Dengan pemanasan sampai 500 derajat C maka zeolit akan mengalami aktifasi, berupa kemampuan mengikat kation menjadi lebih tinggi. Kemampuan mengikat kation inilah yang akan banyak dibahas dalam penulisan masalah zeolit ini. 

Dalam Dunia Pertanian 

Pemanfaatan zeolit di Indonesia masih terbatas, karena belum semua masyarakat tani Indonesia menyadari manfaatnya. Yakni sebagai bahan pembenah tanah. Salah satu sifat kimia dari zeolit adalah kemampuannya mengikat kation yang tinggi. Dalam ilmu tanah disebut dengan KPK (Kapasitas Pertukaran Kation). Nilai KPK dari zeolit ini adalah 120 me/100 gr. 

Nilai KPK ini merupakan parameter tingkat kesuburan suatu jenis tanah. Maka apabila zeolit yang sudah diproses kemudian diberikan pada lahan pertanian akan meningkatkan nilai KPK tanah sekaligus meningkatkan kesuburan tanah. Nilai KPK ini akan menentukan kemampuan tanah untuk mengikat (mengawetkan) pupuk yang diberikan. 

Misalnya tanah dipupuk dengan Urea. Dalam tanah urea akan membentuk ion amonium (NH4+), ion ini apabila tidak diikat oleh tanah (zeolit) maka akan terbuang percuma lewat air irigasi. Dengan demikian unsur hara yang diberikan lewat pemupukan akan lebih efisien apabila tanah pertanian diberi zeolit. Zeolit tidak hanya mengawetkan unsur N saja, tetapi juga K, Ca dan Mg. 

Kemampuan mengawetkan pupuk ini berarti akan menghemat beaya pemupukan. Secara kasar petani di eks Karesidenan Surakarta bisa menghitung apabila menggunakan zeolit maka akan menghemat pupuk sekitar 30 % dari dosis yang diberikan. Hal ini tanpa mengurangi produksi tanaman padi. Bahkan untuk tanah dengan kandungan P sedang sampai cukup selama tiga musim tanam berturut-turut petani tidak menggunakan pupuk P (TSP atau SP 36), hanya dengan menambahkan zeolit pada pupuk mereka. 

Bahkan karena realitas di atas ada sebagian petani yang beranggapan bahwa zeolit bisa menggantikan peran pupuk P sebagai pupuk dasar. Sebenarnya dari produsen sudah mencantumkan dalam kemasan tentang penggunaan zeolit tersebut. Bahwa zeolit adalah bahan pedamping pupuk Urea, SP-36 dan KCI, bukan pengganti pupuk tersebut. Tetapi dalam bahasa bisnis sering dikatakan sebagai pupuk dasar (pupuk P) yang murah......

Kandungan Utama 

Secara kimia kandungan zeolit yang utama adalah: Si02 = 62,75%; A1203 =12,71 %; K20 = 1,28 %; CaO = 3,39 %; Na2O = 1,29 %; MnO = 5,58 %; Fe203 = 2,01 %; MgO = 0,85 %; Clinoptilotit = 30 %; Mordernit = 49 %. Sedangkan nilai KPK antara 80 - 120 me/100 gr, nilai yang tergolong tinggi untuk penilaian tingkat kesuburan tanah. Nilai KPK ini akan menentukan kemampuan bahan tersebut untuk menyimpan pupuk yang diberikan sebelum diserap tanaman.

Secara umum fungsi zeolit bagi lahan pertanian adalah:
  • Meningkatkan kadar oksigen terlarut dalam air irigasi lahan persawahan. 
  • Menjaga keseimbangan pH tanah. 
  • Mampu mengikat logam berat yang bersifat meracun tanaman misalnya Pb dan Cd. 
  • Mengikat kation dari unsur dalam pupuk misalnya NH4+ dari urea K+ dari KC1, sehingga penyerapan pupuk menjadi effisien (tidak boros). 
  • Ramah lingkungan karena menetralkan unsur yang mencemari lingkungan.
  • Memperbaiki struktur tanah (sifat fisik) karena kandungan Ca dan Na. 
  • Meningkatkan KPK tanah (sifat kimia). 
  • Meningkatkan hasil tanaman. 

Bila dibandingkan dengan bahan organik dalam fungsinya sebagai pemantap tanah, maka zeolit akan lebih unggul. Secara teknis sebenarnya bahan organik juga bisa menggantikan peran zeolit. Tetapi ada beberapa kelemahan dari bahan organik sehubungan dengan aplikasinya di lahan pertanian. Kelemahan itu antara lain bahan organik akan melepaskan asam-asam organik yang akan menurunkan pH tanah. Menurunnya pH tanah berarti menurun pula tingkat kesuburan tanah.

Bahan organik juga mempunyai sifat mengikat dan tidak akan melepaskan unsur-unsur mikro (chellating agent) sehingga tanaman kekurangan unsur mikro (Fe, Mn, Cu dan Mo). Kemudian dalam aplikasinya sulit disosialisasikan pada tingkat petani, karena kuantitasnya yang besar dan tidak semua petani memiliknya.

Tetapi dengan menggunakan zeolit maka petani akan lebih mudah dalam aplikasinya di lahan pertanian. Disamping karena harganya murah juga dapat dipakai dengan mudah dan ringkas.

Penggunaan zeolit dalam lahan pertanian ibarat memberi makan tanaman dengan wadahnya. Jadi apabila tanah diberi pupuk dengan tambahan zeolit, maka ibaratnya zeolit adalah wadahnya dan pupuk adalah makanannya. Dengan demikian pupuk (makanan) yang diberikan pada tanaman akan selalu tersedia dan awet karena tidak tercecer kemana-mana.

 Tambang Zeolit 

Potensi bahan tambang zeolit di Indonesia sangat melimpah. Hampir setiap daerah yang memiliki pegunungan kapur maka disitulah kaya akan zeolit. Kebanyakan zeolit di Indonesia didominasi oleh jenis mineral Mordernit dan Klinoptilotit. Misalnya untuk Jawa Barat bagian selatan terdapat di Kecamatan Cikembar, Kabupaten Sukabumi. Untuk dapat dipakai sebagai bahan pembenah tanah maka zeolit harus diproses terlebih dahulu.
Proses tersebut secara sederhana dapat dirangkai sebagai berikut:
  1. Penambangan dari areal tambang berupa batuan bongkah-bongkah batu zeolit yang berwarna kelabu sampai hijau tua diambil dari lokasi penambangan. 
  2. Aktifasi berupa pemanasan seperti layaknya membakar batu kapur. Dikehendaki untuk menjadikan zeolit menjadi mineral aktif maka dipanaskan pada suhu minimal 500 derajat C. 
  3. Penghancuran (chrussing). Dengan menggunakan jaw chrusser maka dari bongkah-bongkah batuan zeolit dipecah menjadi ukuran yang lebih kecil. 
  4. Penghalusan (grinding dan screening). Proses ini bertujuan untuk mendapatkan bentuk tepung dari batuan zeolit. Ukuran yang dikehendaki untuk keperluan pertanian antara 80-100 mesh. Sedangkan untuk keperluan industri di atas 300 mesh. 
  5. Granulasi. Untuk memudahkan aplikasi di lahan pertanian maka dari bentuk tepung dibuat butiran (granulair). Ukuran granulasi ini biasanya antara 3 mm-5 mm. Bentuk butiran ini akan segera larut bila berada dalam air sehingga akan cepat bereaksi dengan pupuk yang diberikan. 
  6. Pengemasan. Guna memudahkan dalam pengangkutan maka dari bentuk butiran ini dikemas dalam karung dengan berat 50 kg. Kemudian diberi merk sesuai dengan keinginan masing-masing perusahaan. Dianjurkan untuk penggunaan pada tanah yang berpasir berukuran 100 mesh atau lebih sedangkan untuk tanah tekstur lempungan ukurannya di bawah 100 mesh. 

Prospek Pengembangan 

Suatu langkah terobosan yang patut diperhatikan penggunaan zeolit sebagai pembenah tanah. Bagi daerah yang berpotensi untuk eksplorasi dan eksploitasi bahan tambang tersebut seyogyanya mulai berbenah diri. Memanfaatkan potensi alam tersebut untuk pengembangan dan pembangunan wilayah. Sebenarnya zeolit banyak diperlukan pada berbagai sektor industri. Mulai dari industri kertas, elektronika, deterjen, filter polutan dll. Bisa dihitung berapa juta ton pupuk bisa dihemat apabila penggunaan zeolit dicanangkan di seluruh Indonesia. (Ir Harjono-35)
Sumber : suaramerdeka.com

Wednesday, 16 May 2012

Assessing Soil Acidity

By  Richard Fisher, E. M Hutton, Avilio A. Franco, Anthony Juo, Donald Kass, and Dale Evans

What Is an acid soil? 

Soil scientists use ranges of pH values to describe the acidity of soils. Soils in the pH range of 6.8 to 7.2 are considered neutral. Any soil with a pH of less than 6.8 is considered acidic, and any soil with a pH of more than 7.2 is considered alkaline. Soils with a pH of less than 35 or more than 10 rarely support plant growth Acid soils are described as "mildly acidic," "moderately acidic," and "strongly acidic" as pH values decrease. Mildly and moderately acid soils may not be detrimental to the growth of most plants.


Source: Caudle (1991).
The term "acid soil" is usually reserved for soils in which many types of plants have difficulty growing. This manual is concerned with these strongly acidic soils. They are characterized by a pH of less than 5.5 and one or more chemical problems that limit plant growth. Such problems may include (1) toxic levels of available aluminum, (2) toxic levels of available manganese, and (3) infertility due to insufficient levels of other elements important for plant growth, particularly calcium and phosphorus. Strongly acidic soil conditions limit the kinds of plants that can grow, the productivity of those plants, and the efficiency of fertilizers applied to increase plant productivity.

What is pH? 

The acidity of a soil is assessed in terms of the acidity or alkalinity of the soil solution - the moisture in the soil - as measured in units of pH. The soil solution contains chemical elements in dissolved ionic form. Many of these function as essential plant nutrients, taken up from the soil solution by the roots of plants.

The acidity of a soil results from the relative presence or absence of acidic ions, such as hydrogen (H+), in the soil solution. Soil acidity increases with the increased presence of these ions and decreases with the increased presence of basic ions such as calcium (Ca++) and magnesium (Mg++).

The acidity of a soil solution is expressed on the pH scale as the negative logarithm of the hydrogen ion (H+) concentration. Because the pH scale is mathematically logarithmic, a pH change of one unit represents a ten-fold change in the acidity or alkalinity of the solution being measured. Thus a soil with pH 5 is ten times more acidic than a soil with pH 6. A soil with pH 4 is ten times more acidic than one with pH 5 and 100 times more acidic than a soil with pH 6.

How do soils become acidic?

Soils become acidic through the normal leaching action of rainfall over long periods of time. As rainwater moves down through the soil, it absorbs carbon dioxide from the soil atmosphere and forms weak carbonic acid. It also acquires weak organic acids as it encounters soil organic matter. This acidic solution attracts basic ions, such as calcium (Ca++), magnesium (Mg++), potassium (K+), and sodium (Na+), detaches them from the soil exchange complex, and leaches them from the rooting zone. As these basic ions are leached, they are replaced by acidic ions of hydrogen (H+) and aluminum (Al+++). Over long geologic periods, soils in warm climates with high rainfall become severely depleted of basic ions and strongly acidified. Many of these acid soils also have levels of available aluminum or other ions that limit plant growth.

At a pH of 5.5, a soil generally does not inhibit the growth of crops or trees because it contains little available (exchangeable) aluminum. As pH decreases to 5.1 or lower, the amount of available aluminum increases and begins to interfere with the uptake of calcium and phosphorus, adversely affecting plant growth.

The soil taxonomy classification of the United States Department of Agriculture labels most tropical soils with a pH of less than 5.5 as Oxisols or Ultisols. The Food and Agriculture Organization (FAO) calls these Ferralsols and Acrisols. The Oxisols, with aluminum saturations of 79 to 89 percent, are more harmful to leguminous trees and crops than are the Ultisols, with aluminum saturations of 49 to 64 percent. There are also some strongly acidic Entisols (called Arenosols by FAO), Inceptisols (classified as Cambisols, Plinthosols, and Gleysols by FAO), and Andisols (Andosols).

How does soil acidity affect the availability of nutrients? 

Plant roots obtain nutrients from the soil solution, and that solution's chemical composition is affected by its pH. Nutrient availability is greatest in soils with a pH between 55 and 65. When the soil solution falls outside this range, plants often show signs of nutrient deficiencies.

In alkaline soils at a pH above 7.0, phosphorus, iron, zinc, boron, and copper become less available to plants. In acid soils at a pH below 5.0, phosphorus and molybdenum become less available and soil nitrification slows down. Some nutrients - such as calcium, magnesium, and potassium - may be lost, and high levels of available iron or aluminum may lead to the formation of insoluble phosphate compounds, dramatically reducing the level of phosphate available to plants.

The two most important indicators of acid soil conditions that are severe enough to limit plant growth are low pH and high levels of available aluminum. Indeed, aluminum toxicity and soil infertility are often associated. In soils with a pH of 5.1 or lower, aluminum levels often constitute more than 50 percent of the cation exchange complex. Manganese toxicity can also occur in a soil with a pH of less than about 5.5, but manganese toxicity is not as common as aluminum toxicity.

How do you measure soil acidity? 

The best way to determine whether a soil is strongly acid is to consult a soil scientist. Failing this, a general soil survey map may be useful. Such a map may include specific information on soil pH and the degree of aluminum saturation. Otherwise, as a general "rule of thumb," soils classified as Oxisols or Ultisols are likely to be strongly acidic in tropical climates.

If you cannot consult a soil scientist or a reliable soil map, you may need to collect soil samples and have them analyzed. Take separate samples at depths of 0 to 20 cm, 20 to 50 cm, and 50 to 100 cm below the soil surface. The subsoil is normally the best indicator of acidity because the surface soil (at 0 to 20 cm) is often affected by recent management. Altogether, you will need about 10 separate samples at each depth for each distinct soil area in your site. Mix together the 10 samples for a specific area and depth and take a small subsample of the mixture.

You may be able to send your samples to a soil laboratory for analysis of pH and available aluminum levels. Alternatively, you can analyze the pH levels of your soil samples using a portable pH meter, colorimetric test kit, or test strips. Mix each subsample with an equal volume of pure water (rain water is preferable to tap water if deionized water is not available). After mixing, allow the soil particles to settle for a few minutes and then measure the pH of the solution above the soil particles.

Equipment for measuring pH is available by mail order or from retail outlets that specialize in agricultural or scientific supplies. Colorimetric pH test kits are fairly inexpensive but are less precise than electrochemical instruments. There is no simple field test for available aluminum, but if the pH is below 5.0, then available aluminum is likely to be high.

An alternative to analyzing the soil is to observe plant growth as an indicator of soil conditions. What kinds of plants are growing in the soil? The presence of plants that tolerate acid soils such as imperata grass, bracken ferns, and Stylosanthes species-is an indication of acid soil conditions. If crops are growing well, the soil is probably not highly acid. If, on the other hand, there are problems with beans, cotton, or maize crops, then soil acidity may be the culprit. Phaseolus beans (not cowpea types) are particularly sensitive to aluminum toxicity if they are growing well, aluminum may not be a problem.

How do you Interpret the results of a soil analysis? 

An analysis of soil nutrients is often expressed in terms of milliequivalents per 100 g of soil (meq/100 g). An equivalent expression is cmol charge/kg. Values given as milliequivalents per 100 g of soil may be converted to parts per million (ppm) as follows:
1 meq/100 g of K+ (potassium) = 391 ppm
1 meq/100 g of Al+++ (aluminum) = 90 ppm
1 meq/100 g of Mg++ (magnesium) = 122 ppm
1 meq/100 g of Ca++ (calcium) = 200 ppm
1 meq/100 g of Na+ (sodium) = 230 ppm.

 Phosphorus content is usually expressed as parts per million. Most field and vegetable crops will respond to additions of phosphorus and potassium fertilizers when soil phosphorus (sodium bicarbonate [NaHCO3]-extractable) is in the range of 8 to 15 ppm and exchangeable soil potassium is in the range of 60 to 100 ppm. Soil phosphorus above 25 ppm is considered adequate for maize. One important measure that can be obtained from soil test results is the percent of aluminum saturation. This value compares the amount of exchangeable aluminum in the soil with the sum of aluminum plus exchangeable bases, as in the formula:

 Al / (Ca + Mg + K + Na + Al) x 100 = % Al saturation

In most cases, not all of these elements need to be analyzed. As a minimum for calculating percent aluminum saturation, the content of aluminum, calcium, and magnesium should be determined.

Plant species and varieties differ in the amount of aluminum saturation they can tolerate: above that limit, plant growth is reduced. Generally, cowpea-type beans, males, rice, and cassava have high tolerance to aluminum (70-100% saturation), whereas phaseolus-type beans, sorghum, soybeans, and wheat have low to moderate tolerance (0-70%), and cotton and maize have low tolerance (0-40%). Some nitrogen fixing tree species are known to tolerate high levels of aluminum in the soil, but the critical level for many species is not known. Controlled experiments are required to provide this information for a number of tree species and, in some cases, for particular varieties and provenances.

If plants show stunting, crinkled leaves, or leaves with small brown spots, manganese toxicity may be suspected. To determine manganese toxicity, apply a 5 percent hydrogen peroxide solution to a soil sample: if the solution fizzes (makes bubbles), manganese toxicity may be a problem.

Source : http://www.fastonline.org

Share

Twitter Delicious Facebook Digg Stumbleupon Favorites More