ZEOLIT, SI MURAH BERKHASIAT TINGGI UNTUK KEBUN SAWIT

Penelitian aplikasi zeolit dilakukan pada pembibitan kelapa sawit untuk mengetahui pengaruhnya terhadap medium tanam dan pertumbuhan serta serapan hara bibit kelapa sawit ....Readmore

MANFAAT ZEOLITE PADA TANAH, TANAMAN, TERNAK DAN TAMBAK

Dengan majunya penemuan teknologi, zeolite disebut dengan nama mineral serba guna, karena fungsinya yang sangat beraneka ragam, .... Readmore

NATURAL ZEOLITE FOR RADIATION PROTECTION

Toxic nuclear radiation is being spread all around our world due to many reactors malfunctioning or spilling their deadly load into the environment. Radiation can .... Readmore

MEMBUAT FILTER AIR SEDERHANA DENGAN ZEOLITE

Air merupakan kebutuhan yang sangat vital bagi kehidupan manusia. Karena itu jika kebutuhan akan air tersebut belum tercukupi maka dapat memberikan dampak .... Readmore

TZP Plus (Soil Conditioner)

Solusi memperbaiki lahan, meningkatkan produksi dan kualitas hasil pertanian. Terdaftar.....Readmore.

Showing posts with label Innovative Zeolite. Show all posts
Showing posts with label Innovative Zeolite. Show all posts

Wednesday, 12 September 2012

Solar Ice Maker Chills with Heat and Zeolite

Seems counterintuitive, but solar energy can be harnessed to make ice cubes. An electricity-free alternative to refrigeration and air-conditioning, solar icemakers use the sun's heat during the day to drive a chemical reaction that separates a liquid refrigerant from a solid absorbent. The solid absorbent stays in the solar collector, while the liquid refrigerant is driven away and stored in a separate component called the evaporator. At night, the chemical reaction runs in reverse; the solid absorbent sucks the liquid refrigerant back into the collector. The movement happens through natural convection - without pumps, valves or any mechanical components. In the process, the liquid refrigerant evaporates and gets very cold. Any water touching the outside of the evaporator is frozen to ice, in an intermittent absorption refrigeration cycle. Basically, the two materials (absorbent and refrigerant) create a chemical reaction that becomes so cold that anything near the chemical reaction freezes - like water. To create ice continuously, the chemical reaction is produced over and over again by separating the two chemicals, using the heat of the sun, and then combining them again, at night. Once the icemaker is constructed, it has a zero carbon footprint. Greenhouse gases are not emitted during its operation nor are there any chemicals emitted that would deplete the ozone layer.

Many off grid applications exist for solar ice makers using the zeolite/water-vacuum process diagrammed here. A reservoir of water in an evacuated chamber is used to make the ice. This water reservoir is connected by a tube to another chamber containing Zeolite. Since this tube is also evacuated it contains water vapor. The chilling process is started by opening a valve so the water vapor flows to the Zeolite where it will be absorbed. As this happens, the Zeolite warms up, absorbing heat from the water reservoir as it does so. The reaction is sufficiently intense to cool the water in the reservoir enough so that it freezes. For each square meter of solar collecting area, these ice makers can generate over 10 lbs of ice. ©2012 Squidoo


Three Types of Solar Ice Makers 
Solar ice makers use one of 3 different methods: Zeolite/water - vacuum, CaCl /ammonia, or carbon/methanol. The zeolite/water under a vacuum is the easiest to implement since it doesn't include a hazardous chemical like methanol or ammonia. The carbon/methanol needs 1 square meter of collecting area to generate around 20 lbs of ice. While the ice is generated over night with these intermittent refrigeration cycles, you can cover the solar collector after a few hours to start the process.

How They Work
The plumbing of the ice maker can be divided into three parts: a generator for heating the salt-ammonia mixture, a condenser coil, and an evaporator, where the distilled ammonia collects during generation. Ammonia needs to flow back and forth between the generator and evaporator.These ice makers operate in a day/night cycle, generating distilled ammonia during the daytime and then re-absorbing it at night. The gas condenses in the condenser coil and drips down into the storage tank where, ideally, 3/4 of the absorbed ammonia collects by the end of the day. As the generator cools, the night cycle begins. The calcium chloride re-absorbs ammonia gas, pulling it back through the condenser coil as it evaporates out of the tank in the insulated box. The evaporation of the ammonia removes large quantities of heat from the collector tank and the water surrounding it. Water in bags around the tank turns to ice. In the morning the ice is removed and replaced with new water for the next cycle.

Self-Cooling Beer Kegs
An example of a Zeolite ice maker has been incorporated into the Self Cooling Beer Keg. The self-cooling keg contains three chambers. A reservoir of water in an evacuated chamber surrounds the inner chamber containing the beer. This water reservoir is connected by a tube to the outer chamber containing Zeolite. Since this tube is also evacuated it contains water vapor. By opening a valve the water vapor flows to the Zeolite where it will be absorbed. As this happens, the Zeolite warms up, absorbing heat from the water reservoir as it does so. The reaction is sufficiently intense to cool the water in the reservoir enough so that it freezes. After 30 minutes, a cold glass of beer can be tapped and the keg will keep a perfect drinking temperature for at least 12 hours. There aren't any commercially available models of these ice makers yet that aren't rather large and cost $1000 or more. The first viable product is the beer keg($35) but soon will we see other products. If you can chill 5 gallons for 8 hours with no power, they would be perfect for chilled drinks while camping or boondocking.

Source : http://www.solaripedia.com

Tuesday, 17 July 2012

Natural Zeolite for Radiation Protection

Natural Zeolite for Radiation Protection


Toxic nuclear radiation is being spread all around our world due to many reactors malfunctioning or spilling their deadly load into the environment. Radiation can cause long-term damage leading to leukopenia, genetic damage and physical deformity. Food can become contaminated with radioactive isotopes, as well the water supply that irrigates crops and supplies drinking water.

Natural Zeolite, has some unique properties that make it a viable aid in ridding the body of radiation once exposed. Radiation detox cold be a primary use for this substance. The zeolite molecules, acting like a magnet with a negative charge, grab on to the radioactive particles which have a positive charge. This means that if you have ingested or absorbed radioactive particles, the zeolite can be ingested and potentially find and grab on to those particles and remove them safely through excretion.

Natural Zeolites are so powerful they are even used in toxic dump and nuclear waste cleanup. At the Hanford Nuclear Facility in Richland, Washington, radioactive strontium-90 and cesium-137 have been removed from radioactive waste solutions by passing them through tanks packed with the natural zeolite. After the accident at the Three Mile Island nuclear power plant, zeolites were used to adsorb radioactive ions.

More than 500,000 tons of zeolite was dumped via helicopter at Chernobyl to absorb radioactive chemicals and other harmful toxins that were released during the disaster. In addition, cattle were fed zeolite to help keep radioactive ions out of milk, and zeolite was baked into cookies/biscuits to help minimize the contamination in humans. Sandbags of Zeolite were dropped into the seawater near the Fukushima nuclear plant to adsorb radioactive Cesium that was present there in high levels.

Source :http://www.zeolite-sale.com

Siemens Innovative Zeolitic Drying System

An innovative zeolitic drying system from Siemens has won the Award for Climate Protection and the Environment in the category for product and service innovations in the field of climate protection. Equipped with this system, the Siemens speed Matic dishwasher is around 20% more efficient than appliances in the highest energy-efficiency category. Its minimal water consumption, 10 instead of 14 liters per cycle, also sets a new record. Engineers at BSH Bosch und Siemens Hausgeräte are the first to take this completely new technology to the mass-production stage as well. Although it is only featured in top-of-the-range models at present, there are already plans to introduce it successively in mid-range models.

Inside the dishwasher are special minerals that generate supplementary heat. This shortens the program at 50°C to just under two hours, which is around 30 minutes less than is needed by conventional dishwashers. As a result, the speedMatic is also the fastest dishwasher in the highest efficiency category. This supplementary heat is generated by zeolites – aluminosilicate minerals with a very large surface area and microporous structure. The dishwasher exploits the ability of such minerals to absorb up to 40% of their dry weight in water and, in the process, give off heat. By the same token, they release this water when heated.

During the drying cycle, warm, moist air is fed into a container under the dishwasher chamber, which contains 1.15 kilograms of small white zeolitic granules. These absorb the moisture and release hot, dry air, thus substantially shortening the drying cycle. In the next washing cycle, the granules are heated to remove the moisture, thereby regenerating them. The zeolithes stay in the dishwasher during its whole lifetime.


Thanks to its increased efficiency, the new dishwasher helps save energy and thus reduce CO2 emissions. If all dishwashers with an energy consumption of over 1.3 kWh per cycle were replaced by ultra-efficient appliances with zeolitic drying, the savings in Germany alone would amount to over 1.2 million metric tons of CO2 a year. That corresponds to the amount of C02 produced by approximately 600,000 passenger cars, each driving 15,000 kilometers a year.

Sources : http://design.kitchensatlanta.com

Wednesday, 16 May 2012

Assessing Soil Acidity

By  Richard Fisher, E. M Hutton, Avilio A. Franco, Anthony Juo, Donald Kass, and Dale Evans

What Is an acid soil? 

Soil scientists use ranges of pH values to describe the acidity of soils. Soils in the pH range of 6.8 to 7.2 are considered neutral. Any soil with a pH of less than 6.8 is considered acidic, and any soil with a pH of more than 7.2 is considered alkaline. Soils with a pH of less than 35 or more than 10 rarely support plant growth Acid soils are described as "mildly acidic," "moderately acidic," and "strongly acidic" as pH values decrease. Mildly and moderately acid soils may not be detrimental to the growth of most plants.


Source: Caudle (1991).
The term "acid soil" is usually reserved for soils in which many types of plants have difficulty growing. This manual is concerned with these strongly acidic soils. They are characterized by a pH of less than 5.5 and one or more chemical problems that limit plant growth. Such problems may include (1) toxic levels of available aluminum, (2) toxic levels of available manganese, and (3) infertility due to insufficient levels of other elements important for plant growth, particularly calcium and phosphorus. Strongly acidic soil conditions limit the kinds of plants that can grow, the productivity of those plants, and the efficiency of fertilizers applied to increase plant productivity.

What is pH? 

The acidity of a soil is assessed in terms of the acidity or alkalinity of the soil solution - the moisture in the soil - as measured in units of pH. The soil solution contains chemical elements in dissolved ionic form. Many of these function as essential plant nutrients, taken up from the soil solution by the roots of plants.

The acidity of a soil results from the relative presence or absence of acidic ions, such as hydrogen (H+), in the soil solution. Soil acidity increases with the increased presence of these ions and decreases with the increased presence of basic ions such as calcium (Ca++) and magnesium (Mg++).

The acidity of a soil solution is expressed on the pH scale as the negative logarithm of the hydrogen ion (H+) concentration. Because the pH scale is mathematically logarithmic, a pH change of one unit represents a ten-fold change in the acidity or alkalinity of the solution being measured. Thus a soil with pH 5 is ten times more acidic than a soil with pH 6. A soil with pH 4 is ten times more acidic than one with pH 5 and 100 times more acidic than a soil with pH 6.

How do soils become acidic?

Soils become acidic through the normal leaching action of rainfall over long periods of time. As rainwater moves down through the soil, it absorbs carbon dioxide from the soil atmosphere and forms weak carbonic acid. It also acquires weak organic acids as it encounters soil organic matter. This acidic solution attracts basic ions, such as calcium (Ca++), magnesium (Mg++), potassium (K+), and sodium (Na+), detaches them from the soil exchange complex, and leaches them from the rooting zone. As these basic ions are leached, they are replaced by acidic ions of hydrogen (H+) and aluminum (Al+++). Over long geologic periods, soils in warm climates with high rainfall become severely depleted of basic ions and strongly acidified. Many of these acid soils also have levels of available aluminum or other ions that limit plant growth.

At a pH of 5.5, a soil generally does not inhibit the growth of crops or trees because it contains little available (exchangeable) aluminum. As pH decreases to 5.1 or lower, the amount of available aluminum increases and begins to interfere with the uptake of calcium and phosphorus, adversely affecting plant growth.

The soil taxonomy classification of the United States Department of Agriculture labels most tropical soils with a pH of less than 5.5 as Oxisols or Ultisols. The Food and Agriculture Organization (FAO) calls these Ferralsols and Acrisols. The Oxisols, with aluminum saturations of 79 to 89 percent, are more harmful to leguminous trees and crops than are the Ultisols, with aluminum saturations of 49 to 64 percent. There are also some strongly acidic Entisols (called Arenosols by FAO), Inceptisols (classified as Cambisols, Plinthosols, and Gleysols by FAO), and Andisols (Andosols).

How does soil acidity affect the availability of nutrients? 

Plant roots obtain nutrients from the soil solution, and that solution's chemical composition is affected by its pH. Nutrient availability is greatest in soils with a pH between 55 and 65. When the soil solution falls outside this range, plants often show signs of nutrient deficiencies.

In alkaline soils at a pH above 7.0, phosphorus, iron, zinc, boron, and copper become less available to plants. In acid soils at a pH below 5.0, phosphorus and molybdenum become less available and soil nitrification slows down. Some nutrients - such as calcium, magnesium, and potassium - may be lost, and high levels of available iron or aluminum may lead to the formation of insoluble phosphate compounds, dramatically reducing the level of phosphate available to plants.

The two most important indicators of acid soil conditions that are severe enough to limit plant growth are low pH and high levels of available aluminum. Indeed, aluminum toxicity and soil infertility are often associated. In soils with a pH of 5.1 or lower, aluminum levels often constitute more than 50 percent of the cation exchange complex. Manganese toxicity can also occur in a soil with a pH of less than about 5.5, but manganese toxicity is not as common as aluminum toxicity.

How do you measure soil acidity? 

The best way to determine whether a soil is strongly acid is to consult a soil scientist. Failing this, a general soil survey map may be useful. Such a map may include specific information on soil pH and the degree of aluminum saturation. Otherwise, as a general "rule of thumb," soils classified as Oxisols or Ultisols are likely to be strongly acidic in tropical climates.

If you cannot consult a soil scientist or a reliable soil map, you may need to collect soil samples and have them analyzed. Take separate samples at depths of 0 to 20 cm, 20 to 50 cm, and 50 to 100 cm below the soil surface. The subsoil is normally the best indicator of acidity because the surface soil (at 0 to 20 cm) is often affected by recent management. Altogether, you will need about 10 separate samples at each depth for each distinct soil area in your site. Mix together the 10 samples for a specific area and depth and take a small subsample of the mixture.

You may be able to send your samples to a soil laboratory for analysis of pH and available aluminum levels. Alternatively, you can analyze the pH levels of your soil samples using a portable pH meter, colorimetric test kit, or test strips. Mix each subsample with an equal volume of pure water (rain water is preferable to tap water if deionized water is not available). After mixing, allow the soil particles to settle for a few minutes and then measure the pH of the solution above the soil particles.

Equipment for measuring pH is available by mail order or from retail outlets that specialize in agricultural or scientific supplies. Colorimetric pH test kits are fairly inexpensive but are less precise than electrochemical instruments. There is no simple field test for available aluminum, but if the pH is below 5.0, then available aluminum is likely to be high.

An alternative to analyzing the soil is to observe plant growth as an indicator of soil conditions. What kinds of plants are growing in the soil? The presence of plants that tolerate acid soils such as imperata grass, bracken ferns, and Stylosanthes species-is an indication of acid soil conditions. If crops are growing well, the soil is probably not highly acid. If, on the other hand, there are problems with beans, cotton, or maize crops, then soil acidity may be the culprit. Phaseolus beans (not cowpea types) are particularly sensitive to aluminum toxicity if they are growing well, aluminum may not be a problem.

How do you Interpret the results of a soil analysis? 

An analysis of soil nutrients is often expressed in terms of milliequivalents per 100 g of soil (meq/100 g). An equivalent expression is cmol charge/kg. Values given as milliequivalents per 100 g of soil may be converted to parts per million (ppm) as follows:
1 meq/100 g of K+ (potassium) = 391 ppm
1 meq/100 g of Al+++ (aluminum) = 90 ppm
1 meq/100 g of Mg++ (magnesium) = 122 ppm
1 meq/100 g of Ca++ (calcium) = 200 ppm
1 meq/100 g of Na+ (sodium) = 230 ppm.

 Phosphorus content is usually expressed as parts per million. Most field and vegetable crops will respond to additions of phosphorus and potassium fertilizers when soil phosphorus (sodium bicarbonate [NaHCO3]-extractable) is in the range of 8 to 15 ppm and exchangeable soil potassium is in the range of 60 to 100 ppm. Soil phosphorus above 25 ppm is considered adequate for maize. One important measure that can be obtained from soil test results is the percent of aluminum saturation. This value compares the amount of exchangeable aluminum in the soil with the sum of aluminum plus exchangeable bases, as in the formula:

 Al / (Ca + Mg + K + Na + Al) x 100 = % Al saturation

In most cases, not all of these elements need to be analyzed. As a minimum for calculating percent aluminum saturation, the content of aluminum, calcium, and magnesium should be determined.

Plant species and varieties differ in the amount of aluminum saturation they can tolerate: above that limit, plant growth is reduced. Generally, cowpea-type beans, males, rice, and cassava have high tolerance to aluminum (70-100% saturation), whereas phaseolus-type beans, sorghum, soybeans, and wheat have low to moderate tolerance (0-70%), and cotton and maize have low tolerance (0-40%). Some nitrogen fixing tree species are known to tolerate high levels of aluminum in the soil, but the critical level for many species is not known. Controlled experiments are required to provide this information for a number of tree species and, in some cases, for particular varieties and provenances.

If plants show stunting, crinkled leaves, or leaves with small brown spots, manganese toxicity may be suspected. To determine manganese toxicity, apply a 5 percent hydrogen peroxide solution to a soil sample: if the solution fizzes (makes bubbles), manganese toxicity may be a problem.

Source : http://www.fastonline.org

Wednesday, 30 November 2011

Controlled-Release Fertilizers Using Zeolites



Controlled-Release Fertilizers Using Zeolites

The U.S. Geological Survey (USGS) has experimented with zeolites to help control the release of fertilizer nutrients in soil. The use of soluble fertilizers can lead to water pollution and to wasted nutrients. Nitrogen, for example, can leach into ground and surface waters, especially in sandy soils, and phosphate may become fixed and unavailable to plants, especially in tropical soils. Zeolites are porous minerals with high cation-exchange capacity that can help control the release of plant nutrients in agricultural systems. Zeolites can free soluble plant nutrients already in soil, and may improve soil fertility and water retention. Because zeolites are common, these unique minerals could be useful on a large-scale in agriculture.

USGS research has experimented with zeolites applied to several different fertilizers including controlled-release nitrogen, controlled-release phosphorous fertilizers, and in the release of trace nutrients.

Controlled-Release Nitrogen Fertilizer

Urea is one of the most common nitrogen fertilizers. It is very soluble in water, and can be leached through the root zone. In addition, urea is converted into ammonium ions by an enzyme found in most soils. Soil bacteria then convert these ammonium ions into readily leachable nitrate ions. Using zeolitic rocks in fertilizer can help prevent these nutrient losses.



A controlled-release nitrogen (N) fertilizer can be produced by heating zeolite rock chips to about 400oC to drive out all zeolite and pore water, which is replaced with molten urea. The urea crystallizes at about 132oC. The rate of nitrogen release from the zeolitic rock is slowed in three ways: (1) by containing urea in the rock pores and zeolite crystals, thus preventing the leaching of urea from the root zone; (2) by slowing the conversion of urea by soil enzymes, thus delaying the formation of ammonium ions; and (3) by taking up ammonium ions onto exchange sites in the zeolite, thus protecting them from nitrifying bacteria. Potassium-saturated zeolite prepared by the above method contains approximately 17 wt. percent elemental N. The rate of N release can be controlled by changing the size of the rock chips.

Controlled-Release Phosphorous Fertilizers

Phosphate (H2PO4) can be released to plants from phosphate rock (P-rock) composed largely of the calcium phosphate mineral apatite by mixing the rock with zeolite having an exchange ion such as ammonium. The approximate reaction in soil solution is as follows: (P-rock) + (NH4-zeolite) = (Ca-zeolite) + (NH4+) + (H2PO4-).

The zeolite takes up Ca2+ from the phosphate rock, thereby releasing both phosphate and ammonium ions. Unlike the leaching of very soluble phosphate fertilizers (for example, super-phosphate), the controlled-release phosphate is released as a result of a specific chemical reaction in the soil. As phosphate is taken up by plants or by soil fixation, thechemical reaction releases more phosphate and ammonium in the attempt to reestablish equilibrium. The rate of phosphate release is controlled by varying the ratio of P-rock to zeolite. Phosphorus is also released from the rock by the lowering of soil pH as ammonium ions are converted to nitrate.



Controlled-release fertilizers were tested in greenhouse pot experiments with sorghum-sudangrass using NH4-saturated zeolite (clinoptilolite) and P-rock with a phosphate application rate of 340 mg P per kg soil, and zeolite/P-rock ratios ranging from 0 to 6. Total phosphate uptake and phosphate concentration measured for the grass were related linearly to the zeolite/P-rock ratio, and yields summed over four cuttings were as much as four times larger than control experiments.

Release of Trace Nutrients

Experiments indicate that zeolite in soil can aid in the release of some trace nutrients and in their uptake by plants. The release of phosphorus, potassium (K), manganese (Mn), zinc (Zn), iron (Fe), and copper (Cu) was enhanced by the presence of zeolite in a neutral soil. The concentration of Cu and Mn in sudangrass (in mg/kg) was significantly related to the zeolite/P-rock (x) in experimental systems that used two different NH4-saturated clinoptilolites, two different soils, and two different forms of P-rock.

Potential Harmful Effects

Zeolites can be harmful as well as helpful to plant growth. For example, zeolites with sodium as the chief exchange ion can be toxic to plants, and K-, Ca-, and NH4-poor zeoIites can scavenge these ions from soil solutions and thereby limit plant growth when used in soils that are deficient in these nutrients. These negative results emphasize the need to use appropriate zeolites during agricultural experimentation.

Source : http://www.usgs.gov

Sunday, 25 September 2011

ZEO Health Zeolite


The Cleaning Process of ZEO Health Zeolite

We start with the cleanest zeolite on earth mined specifically for human consumption (the only mine in the world that does this). The zeolite is then intensely washed with purified water and prepared to ensure a standardized cat-ion capacity and clean cage. The zeolite is then put through rigorous quality control tests to ensure its quality and safety is maintained for human consumption. It is thoroughly dried and then MICRONIZED to the smallest powdered particle size thus allowing it to penetrate throughout the body and even through the blood brain barrier to safely remove disease causing toxic heavy metals that include lead, mercury, cadmium, arsenic, nickel, barium and other toxic chemicals.

Milled vs. Micronized Zeolite

Another characteristic of a low grade zeolite has to do with the way it is processed. When zeolite rocks are “milled”, they are grinded to powder. This is normally takes place at the mine and it the cheaper way to create powder. The problem with the milling process is that it crushes the zeolite cage structure rendering the zeolite un-absorbable in the body and largely ineffective for human consumption. “Micronization” is the only way to make powdered zeolite and maintain the benefits of the cage structure.



The micronization process is an expensive quality control. When faced with the choice of milling the zeolite at the mine or shipping it out to a specialty micronization plant, many zeolite companies choose to mill the zeolite. All Zeo Health Ltd. zeolite is micronized with the strictest quality controls and highest standards for human consumption.

Refference : http://www.zeolite.com

Friday, 23 September 2011

Use Zeolite for Water Treatment

The high cation exchange capacity (C.E.C.) of GSA zeolites combined with their selective affinity for specific cations make them uniquely suited to various applications in water treatment. These natural zeolites have been shown to be effective in industrial and municipal waste water systems. The following is a listing of those cations which can be removed from various effluents by GSA zeolites under the proper conditions:

Rb+ Li+ K+ Cs+ NH+4

Na+ Ag+ Cd+2 Pb+2 Zn+2

Ba+2 Sr+2 Cu+2 Ca+2 Hg+2

Mg+2 Fe+3 Co+3 Al+3 Cr+3

One of the first full scale projects to incorporate natural zeolites in a municipal tertiary water treatment system was built for the Tahoe Truckee Sanitation Agency. This system, designed by CH2M Hill, utilizes zeolite as an ion exchange medium for the removal of ammonium (NH+4). The municipal effluent containing ammonium is passed through the natural zeolite which adsorbs the ammonium ion. The efficiency of ammonium removal is dependent upon temperature, water quality, and rate of flow. Regeneration of the natural zeolite bed for reuse is achieved by passing a brine solution through it. The regenerant then is passed through a stripping unit and the ammonium is converted into ammonium sulfate, and sold as a fertilizer.


A pilot project near Denver, Colorado, is now using natural zeolites for the removal of ammonium in a potable water system. Similar systems are now in production which remove various pollutants including heavy metals and radioactive ions from industrial effluents.

One alternative to a typical tertiary water treatment plant is to apply effluents over natural soils. The soil filters the pollutants from the water as it gradually percolates to the natural ground-water table which may be recovered from wells for reuse. The soil, as an ion exchange medium, is regenerated by way of crop production capable of removing many of the pollutants. A major limitation of such systems is the requirement for percolation which typically necessitates the use of a sandy soil type not ideal for ion exchange. The low cation exchange capacity of these sandy soil can then be enhanced through the addition of GSA zeolites which will not impede percolation. Tests of such a system were carried out by Dr. Ian Pepper of the University of Arizona. In these tests, a turf grass was used to regenerate the system and adequate efficiencies of pollutant removal were found to be attainable. Additions of natural zeolites in these systems may be found to favorably improve the sequestering of heavy metals. Further testing is required to fully demonstrate this possibility.

Systems for the specific removal of cations from industrial wastes utilizing natural zeolites as a component of the filter medium have been commercialized. These systems have successfully recovered precious metals from plating operations as well as basic industrial pollutants from effluents.

Reference : http://www.gsaresources.com

Tuesday, 20 September 2011

Agriculture and Plant Growing Use Of Natural Zeolite On Sandy Soil

Fields of using the natural zeolite embrace practically all kinds of human activities , and above all in agriculture, plant growing and ecology as follows .
  1. Ameliorant, natural fertilizer structure modifier, radionuclide absorber
  2. Soil deoxidizer (cations of heavy metals in the soil being decontaminated and the soil its elfbeingenriched with micro elements )
  3. Stabilizer of mineral fertilizers
  4. Mineral component of foamed glass and concrete.
  5. Active additive to grouting mortars for well cementing
  6. Abrasive materi al for producing cleaning compositions
  7. Ion exchanger and sorbent for water purification and softening


Natural HOUSEPLANTS preserves water in the soi l , retaining it for along time and supplying plants with it slowly and continuously.
The use of natural zeolite stops washing out of fertilizers from the soil , restores and increases ability of the soil to exchange nutrients for plants .
Natural zeolite prevents diseases of roots of the plants , being a source of micro elements and a soil temperature regulator.

A significant number of exchange bas es : Ca, Mg, Na, K and various microelements whos equantity distinctively exceeds their content in the soil , get into the soil together with zeolite. Thanks to the hghly active sorbent and to the appearance of exchange bases in the soil solution and the solid phase absorbing functions of the soil complex made up by sandy soils are increased.

The practical introduction of cli noptilolite into the soil results in the significant accumulation of mobile and absorbed calcium; it proves that the natural mineral and the soil interact immediately. The natural zeolite acts as an ion exchanger: cations from the clinoptilolite structure are replaced with hydrogen ions of the soil solution and of the soil solid phase. Thus , as a resul t of the cli noptilolite applicati on the content of Ca, K and Mg exchange bases in the soil absorbing complex is si gnificantly increased as compared with the initial one.

So the increase of the calcium content in the soil complex, caused by zeolite applicati on proves that it actively interacts not only with the soil but also with mineral fertilizers . The point in view is the exchange absorption of important-for-plant-nutrition cations introduced into the soil together with fertilizers . This property of natural zeolites is used to prevent losses of nutrient substances while they are accumulated in the soil .

Genetic resources of mineral and organic resources , being, as it is known, main carriers of the soil absorbing capacity are extremely limited in sandy soils , and consequently is limited is the capacity of the soil to absorb and retain nutritive substances . When natural zeolite is introduced into the soil the content of an active mineral fraction having good ion-exchange properties increases , resulting .in the growth of the absorbing capacity of the fertile soil . In practice the greatest increase in cation capacity may be attained when 1 hectare of land is treated wi th 15 tons of zeolite. This method is rather efficient and its effect is preserved for a long time: from 5 to 7 years .

The cation exchange capacity of the soil enriched with zeolite increases at the expense of natural reserves of alkaline earth elements cations as well as due to its elective exchange capacity to absorb and retain nutritive substances from fertili zers that have been introduced into the soil . With the increase of the absorbing capacity of the soil its most important properties improve which is reflected on the growth and heal th of plants .


Wednesday, 6 April 2011

Penggunaan Zeolite pada Pertanian beserta Dosis Pemakaian

Dasar Kebijakan Pemerintah:
  • SK Menteri Pertanian No 07/Kpts/Mentan/Bimas/XII/1998 tanggal 9 Desember 1998
  • Dirjen Tanaman Pangan & Hortikultura No. PR.130.760 .11.1998 tanggal 26 November 1998 telah menyetujui zeolite sebagai bahan pembenah tanah.
Fungsi zeolite bagi lahan pentanian :
  1. Menjaga keseimbangan pH tanah.
  2. Meningkatkan kadar oksigen terlarut dalam air irigasi lahan persawahan.
  3. Mampu mengikat logam berat yang bersifat meracun tanaman misalnya Pb dan Cd
  4. Mengikat kation dan unsur dalam pupuk misalnya NH4+ dan urea K+, KCl dan ion Posphat, sehingga penyerapan pupuk menjadi effisien (tidak boros).
  5. Ramah Iingkungan karena menetralkan unsur yang mencemari Iingkungan.
  6. Memperbaiki struktur tanah (sifat fisik) karena kandungan Ca dan Na.
  7. Meningkatkan KTK tanah (sifat kimia).
  8. Meningkatkan hasil tanaman
Zeolite juga sangat mendukung sistem pertanian, dengan menggunakan zeolite hasil produk pertanian akan lebih optimal.
Cara Penggunaanya :
  1. Penggunaan zeolite sebaiknya dilakukan pada saat pengolahan tanah (Penggarukan) Yaitu dengan cara ditebarkan secara merata dengan dosis sebesar 100 gram/m2
  2. Campurkan dengan pupuk pada saat pemupukan dengan perbandingan sekitar 5% - 20% dari dosis pupuk yang digunakan




Untuk Tanaman Tahunan & Perkebunan :
Berikut Ini adalah Caranya :
  1. Sebagai Pupuk dasar pada lahan yang akan ditanami dengan aa dicampur dengan pupuk tunggal Lainnya (Urea)
  2. Ditebar merata sesuai dosis anjuran pada parit yang dibuat sedalam 20 cm mengelilingi batang tanaman pada lingkaran sesuai dengan proyeksi tajuk daun dan diberikan bersama dengan pupuk tunggal lainnya pada awal musim hujan.
  3. Jika pemberian dilakukan dengan sistem tebar pada permukaan tanah sebaiknya dilakukan pada saat pengolahan tanah atau sebelum penanaman (Sebagaimana point 1).
  4. Jika pemberiannya dilakukan setelah penanaman (umur muda) gunakan system tunggal atau larikan (garis) diantara tanaman dengan kedalaman 5 sampai dengan 10 cm atau dibuatkan parit sedalam 20 cm mengelilingi batang tanaman, selanjutnya pupuk ditebar merata sesuai dengan dosis anjuran.

Dosis penggunaan :

Saturday, 26 March 2011

Effect of limestone particle size on egg production and eggshell quality of hens during late production


Effect of limestone particle size on egg production and eggshell quality of hens during late production

F.H. de Witt#, N.P. Kuleile, H.J. van der Merwe and M.D. Fair
Department of Animal, Wildlife and Grassland Sciences, University of the Free State, P.O. Box 339, Bloemfontein 9300, South Africa

Abstract

A study was conducted to determine the influence of different particle size limestone in layer diets on egg production and eggshell quality during the later stages of egg production (>54 weeks of age). Calcitic limestone (360 g Ca/kg), consisting of small (<1.0 mm), medium (1.0 - 2.0 mm) and large (2.0 - 3.8 mm) particles were obtained from a specific South African source that is extensively used in poultry diets Isoenergetic (14.32 MJ AME/kg DM) and isonitrogenous (172.01 g CP/kg DM) diets with a dietary Ca content of 39.95 g Ca/kg DM were used. Sixty nine, individual caged Lohmann-Silver pullets, 17 weeks of age, were randomly allocated to the three treatments (n = 23) for the determination of various egg production and eggshell quality characteristics. Egg production and eggshell quality data recorded on individual basis at 54, 58, 64 and 70 weeks of age were pooled to calculate and statistical analysed parameter means for the late production period. Different limestone particle sizes had no effect on any of the tested egg production and eggshell quality parameters. These results suggested that larger particles limestone are not necessarily essential to provide sufficient Ca2+ to laying hens for egg production and eggshell quality at end-of-lay, provided that the dietary Ca content satisfies the requirements of the laying hen.
________________________________________________________________________________
Keywords: Lohmann-Silver, feed efficiency, egg weight, eggshell thickness, calcification
# Corresponding author. E-mail: dewittfh.sci@ufs.ac.za

Pengaruh Penambahan Zeolite pada Kualitas Telur Puyuh

PENGARUH PENAMBAHAN ZEOLIT DALAM RANSUM TERHADAP KUALITAS TELUR BURUNG PUYUH [The Effect of Zeolit Addition in the Ration on Egg Quality of Quail (Coturnix coturnix japonica)]

Sihombing, G and Avivah, Avivah and Prastowo, S (2006) PENGARUH PENAMBAHAN ZEOLIT DALAM RANSUM TERHADAP KUALITAS TELUR BURUNG PUYUH [The Effect of Zeolit Addition in the Ration on Egg Quality of Quail (Coturnix coturnix japonica)]. Journal of the Indonesian Tropical Animal Agriculture, 31 (1). pp. 28-31. ISSN 0410-6320



Abstract

ABSTRAK Sebanyak 125 ekor burung puyuh (Coturnix coturnix japonica) telah digunakan untuk mengkaji pengaruh pemberian zeolit dalam ransum terhadap kualitas telur. Burung dialokasikan sesuai rancangan acak lengkap dengan lima perlakuan, lima ulangan dan masing-masing ulangan terdapat lima ekor burung puyuh. Perlakuan yang diberikan adalah penambahan zeolit pada ransum basal pada masing-masing perlakuan yaitu T0 (0%), T1 (2,5%), T2 (5%), T3 (7,5%) dan T4 (10%). Kualitas telur yang diamati adalah berat telur, persentase berat kerabang, persentase berat kuning telur, persentase berat albumen, tebal kerabang, indeks kuning telur, dan indeks albumen. Hasil penelitian menunjukkan bahwa penambahan zeolit pada ransum basal sampai level 10% secara umum tidak memberikan pengaruh yang signifikan, tetapi penambahan zeolit sampai level 7,5% akan memberikan pengaruh berbeda pada peningkatan tebal kerabang telur. Kata kunci : zeolit, ransum, telur, burung puyuh ABSTRACT A hundred and twenty five quail (Coturnix coturnix japonica) have been used to study the effect of zeolite addition in a ration on quail eggs quality. The birds were allotted to a completely randomized design, with five treatments, five replications and each replication contained five quails. The treatments were T0 (0%), T1 (2.5%), T2 (5%), T3 (7.5%) and T4 (10%). The parameters of egg quality observed were egg weight, egg shell weight, yolk weight percentage, albumen weight percentage, eggshell thickness, yolk index and albumen index. The results showed that zeolite addition in the ration up to 10% did not significally affect overall egg quality, though the zeolite addition up to 7.5%. eggshell thickness.

Sumber : http://eprints.undip.ac.id

Wednesday, 2 March 2011

Agriculture Conditions using Zeolite

Raw material zeolite from Sukabumi mining

ENHANCING OF GROWTH, ESSENTIAL OIL YIELD AND COMPONENTS OF YARROW PLANT (Achillea millefolium) GROWN UNDER SAFE AGRICULTURE CONDITIONS USING ZEOLITE AND COMPOST

E. M. Z. Harb and M. A. Mahmoud
Agricultural Botany Department, Plant Physiology, Faculty of Agriculture, Cairo University, Giza, Egypt

ABSTRACT

The unique cation exchange, adsorption, hydration-dehydration and catalytic operties of natural zeolites (as granules) loaded with micronutrients, have promoted their use in clean agriculture as soil amendments and slow-release fertilizers. This research was conducted in open field to investigate the effects of natural zeolite, organic fertilizer (compost) and combination of them on herb growth, oil yield and components of Yarrow plants (Achillea millefolium). The results indicated that zeolite loaded with micronutrients mixed with organic fertilizer led to significant increase in fresh weight, dry weight,number of flowers, total chlorophylls, carbohydrates content, oil yield as well as major ingredients of essential oil, and mineral nutrients, in comparison with the recommended dose of chemical fertilizers NPK (control) under the same conditions. These results undoubtedly confirm that zeolite and organic fertilizer (compost) mixture could replace the application of chemical fertilizers and consequently improve the quality and quantity of Achillea yield. This application may have direct impacts on safety and efficacy of herbal active constituents which entail for medicinal and aromatic products. Besides minimizing economic costs and pollution of agricultural environment.

Key words: Achillea millefolium , chemical fertilizers, organic fertilizer, yarrow plant , zeolite.

Monday, 30 August 2010

[Panduan Lengkap] Zeolit dan Cara Membuat Pupuk Organik Cair (POC) Super Efektif

[Panduan Lengkap] Zeolit dan Cara Membuat Pupuk Organik Cair (POC) Super Efektif

[Panduan Lengkap] Zeolit dan Cara Membuat Pupuk Organik Cair (POC) Super Efektif

Ditulis oleh: Andi Setia Permana – Praktisi di Industri Zeolite

Abstrak

Pupuk organik cair (POC) semakin populer di kalangan petani karena mampu memperbaiki kesuburan tanah, meningkatkan pertumbuhan tanaman, dan mengurangi ketergantungan pada pupuk kimia. Namun, banyak POC yang cepat basi, bau menyengat, dan kurang stabil dalam penyimpanan. Di sinilah zeolit berperan: mineral alami berpori yang mampu menyerap racun, menstabilkan pH, sekaligus menjadi media pelepas hara lambat. Artikel ini membahas cara membuat POC berbasis zeolit, dosis yang tepat, studi kasus di lapangan, serta bukti ilmiah tentang manfaatnya bagi pertanian berkelanjutan.

Kata Kunci

zeolit POC, pupuk organik cair, manfaat zeolit pertanian, pupuk ramah lingkungan, zeolite agriculture

Kenapa Zeolit Penting dalam Pembuatan POC?

Pupuk organik cair punya segudang manfaat, tapi masalahnya:

  • Mudah terfermentasi berlebihan → cepat basi & berbau busuk.
  • Kandungan hara tidak stabil → hasil POC kurang konsisten.
  • Sulit disimpan lama → efisiensi pemakaian rendah.

Nah, zeolit hadir sebagai “teman setia” petani karena:

  • Menyerap senyawa beracun seperti amonia berlebih.
  • Menstabilkan pH larutan POC.
  • Melepaskan unsur hara secara perlahan (slow release).
  • Meningkatkan kandungan mikroba baik yang bekerja lebih optimal dalam fermentasi.

Studi Kasus: POC Zeolit di Sukabumi

Sebuah kelompok tani di Sukabumi pada tahun 2022 mencoba membuat POC dengan tambahan zeolit 5%. Hasilnya:

  1. POC lebih stabil, bisa disimpan hingga 6 bulan tanpa bau busuk.
  2. Tanaman padi yang diberi POC + zeolit menunjukkan peningkatan hasil panen 12% dibanding POC biasa.
  3. Petani menghemat biaya pupuk kimia hingga 25%.

Cara Membuat POC Berbasis Zeolit

Bahan-Bahan

  • Kotoran ternak segar (sapi/kambing/ayam) – 10 kg
  • Air bersih – 50 liter
  • Molase atau gula merah cair – 1 liter
  • Starter mikroba (EM4 atau sejenisnya) – 250 ml
  • Zeolit halus (ukuran mesh 100–200) – 1 kg
  • Jerami/hijauan cincang – 5 kg (opsional)

Langkah-Langkah Pembuatan

  1. Campurkan kotoran ternak dengan air bersih dalam drum plastik.
  2. Tambahkan molase/gula merah dan aduk rata.
  3. Masukkan EM4 sebagai starter fermentasi.
  4. Tambahkan zeolit halus, lalu aduk hingga tercampur sempurna.
  5. Tutup drum rapat, biarkan fermentasi 14–21 hari, aduk setiap 2–3 hari.
  6. POC siap digunakan ketika bau sudah segar (asam manis) dan tidak menyengat.

Dosis Penggunaan POC Zeolit

Penggunaan POC berbasis zeolit sebaiknya disesuaikan dengan jenis tanaman. Berikut rekomendasinya:

  • Padi: 2–3 liter POC/ha dicampur air, diberikan setiap 10–14 hari.
  • Sayuran daun: 100–200 ml POC per 16 liter air, disemprotkan ke daun setiap minggu.
  • Tanaman buah: 200–300 ml POC per 16 liter air, disiram ke perakaran 2–3 kali sebulan.

Bukti Ilmiah POC + Zeolit

  • Journal of Soil Science and Plant Nutrition (2020): POC dengan zeolit meningkatkan ketersediaan N dan K hingga 25%.
  • IPB University (2021): Fermentasi POC dengan zeolit menghasilkan kandungan mikroba lebih stabil.
  • FAO Report (2019): Integrasi mineral alami dalam pupuk organik meningkatkan produktivitas pertanian berkelanjutan.
  • Universitas Brawijaya (2022): Aplikasi POC zeolit pada sayuran organik meningkatkan bobot segar 15%.

Manfaat Ekonomi dan Lingkungan

Dengan mengombinasikan POC dan zeolit, petani mendapatkan:

  • Tanaman lebih sehat, hasil lebih tinggi.
  • Efisiensi pupuk kimia meningkat → biaya lebih hemat.
  • POC lebih tahan lama & mudah diaplikasikan.
  • Mengurangi pencemaran lingkungan dari limbah organik.
  • Meningkatkan nilai jual produk pertanian organik.

Baca Juga Artikel Terkait

Kesimpulan

Zeolit bukan hanya mineral biasa, melainkan “agen rahasia” yang bisa membuat POC lebih efektif, lebih stabil, dan lebih ramah lingkungan. Dengan kombinasi POC + zeolit, petani dapat meningkatkan hasil panen, mengurangi biaya pupuk kimia, serta menjaga keberlanjutan lingkungan. Inilah solusi cerdas menuju pertanian masa depan yang sehat dan menguntungkan.

Hubungi Kami

Ingin mencoba zeolit untuk pembuatan POC atau butuh pasokan zeolit berkualitas tinggi? Hubungi PT Karunia Jaya Raksa:

Referensi

  1. Journal of Soil Science and Plant Nutrition. (2020). “Zeolite-enhanced Organic Fertilizer”.
  2. FAO. (2019). Sustainable Agriculture and Mineral Resources.
  3. IPB University. (2021). Studi Fermentasi POC dengan Zeolit.
  4. Universitas Brawijaya. (2022). Efektivitas POC Zeolit pada Sayuran Organik.
  5. Asian Journal of Agriculture. (2020). “Zeolite as Soil Conditioner in Organic Farming”.

#Zeolit #PupukOrganikCair #PertanianOrganik #ZeolitPertanian #FarmingInnovation #SustainableAgriculture

[Peluang Emas] Usaha Pembuatan Pupuk Organik Instan dengan Zeolit: Bisnis Hijau yang Menguntungkan

[Peluang Emas] Usaha Pembuatan Pupuk Organik Instan dengan Zeolit: Bisnis Hijau yang Menguntungkan

[Peluang Emas] Usaha Pembuatan Pupuk Organik Instan dengan Zeolit: Bisnis Hijau yang Menguntungkan

Ditulis oleh: Andi Setia Permana – Praktisi di Industri Zeolite

Abstrak

Usaha pembuatan pupuk organik instan semakin menarik karena meningkatnya permintaan produk ramah lingkungan dan tren pertanian berkelanjutan. Namun, masalah klasik seperti kualitas pupuk tidak konsisten, kandungan hara cepat menguap, dan efisiensi rendah membuat banyak produsen kesulitan bertahan. Zeolit, mineral berpori alami, hadir sebagai solusi. Zeolit mampu menyerap racun, menjaga kelembapan, menahan unsur hara agar tidak cepat hilang, sekaligus menjadi agen pelepas hara lambat. Artikel ini membahas bagaimana zeolit menjadi kunci dalam usaha pupuk organik instan, lengkap dengan studi kasus, data ilmiah, serta peluang bisnis masa depan.

Kata Kunci

zeolit pupuk organik, pupuk organik instan, bisnis pupuk zeolit, pertanian ramah lingkungan, usaha pupuk berkelanjutan

Mengapa Pupuk Organik Instan Dibutuhkan?

Pertanian modern tidak bisa lagi bergantung penuh pada pupuk kimia. Tanah semakin keras, biaya input semakin tinggi, dan konsumen makin peduli pada produk organik. Pupuk organik instan menjadi solusi karena:

  • Mudah digunakan → tinggal tabur atau larutkan.
  • Kaya nutrisi → mengandung unsur hara makro dan mikro.
  • Aman untuk tanah jangka panjang → memperbaiki struktur tanah.
  • Lebih disukai pasar ekspor → tren global pertanian hijau.

Peran Zeolit dalam Pupuk Organik Instan

Zeolit bukan sekadar filler, melainkan game changer dalam formulasi pupuk organik instan. Manfaat utamanya antara lain:

  • Meningkatkan efisiensi pupuk: Menahan nitrogen agar tidak cepat menguap.
  • Menstabilkan pH: Membantu tanaman menyerap hara dengan optimal.
  • Menyerap racun: Mengurangi dampak logam berat dan residu pestisida.
  • Slow release agent: Nutrisi tidak habis sekaligus, tapi dilepas perlahan sesuai kebutuhan tanaman.

Studi Kasus: Usaha POC Instan + Zeolit di Jawa Tengah

Pada 2021, sebuah UMKM di Jawa Tengah memproduksi pupuk organik instan berbasis limbah ternak dengan tambahan zeolit 15%. Hasilnya:

  1. Produk lebih tahan lama (umur simpan 12 bulan tanpa menggumpal).
  2. Kadar N total meningkat 18% dibanding tanpa zeolit.
  3. Petani pengguna melaporkan peningkatan hasil cabai hingga 20%.
  4. Permintaan meningkat 40% karena produk lebih praktis dan dipercaya ramah lingkungan.

Cara Membuat Pupuk Organik Instan Berbasis Zeolit

Bahan Baku Utama

  • Kotoran ternak kering (sapi/ayam/kambing) – 50 kg
  • Zeolit halus (mesh 100–200) – 5–10 kg
  • Arang sekam/gipsum – 5 kg
  • Molase – 2 liter
  • Starter mikroba (EM4 atau kultur sejenis) – 500 ml
  • Air secukupnya

Proses Produksi

  1. Campurkan kotoran ternak dengan zeolit dan arang sekam.
  2. Tambahkan molase dan EM4, aduk rata.
  3. Lakukan fermentasi tertutup selama 14–21 hari, aduk setiap 2–3 hari.
  4. Keringkan hasil fermentasi hingga kadar air <15%.
  5. Giling dan kemas dalam bentuk bubuk/granul siap pakai.

Dosis Penggunaan

  • Padi: 200–300 kg/ha per musim tanam.
  • Jagung: 150–200 kg/ha.
  • Sayuran: 50–100 gram/tanaman, diaplikasikan saat tanam dan pemeliharaan.
  • Tanaman buah: 0,5–1 kg/pohon per aplikasi.

Peluang Bisnis Pupuk Organik Instan + Zeolit

Kenapa usaha ini sangat menjanjikan?

  • Pasar pupuk organik di Indonesia tumbuh 12% per tahun.
  • Dukungan pemerintah melalui program Go Organic dan subsidi pertanian hijau.
  • Harga jual lebih stabil dibanding pupuk kimia yang fluktuatif.
  • Bisa dipasarkan secara offline maupun online (marketplace pertanian, e-commerce).
  • Produk ramah lingkungan → disukai konsumen perkotaan dan pasar ekspor.

Perbandingan Pupuk Organik Instan Biasa vs Berbasis Zeolit

Kriteria POC Instan Biasa POC Instan + Zeolit
Daya simpan 6–8 bulan 12–18 bulan
Kadar nitrogen Cepat menguap Tertahan lebih lama
Stabilitas pH Tidak stabil Lebih seimbang
Efisiensi aplikasi Kurang efisien Lebih hemat & optimal
Dampak lingkungan Netral Ramah lingkungan

Baca Juga Artikel Terkait

Kesimpulan

Usaha pembuatan pupuk organik instan dengan tambahan zeolit bukan sekadar bisnis, melainkan langkah nyata menuju pertanian berkelanjutan. Dengan kualitas produk lebih baik, daya simpan lebih panjang, dan manfaat lebih besar bagi petani, usaha ini berpotensi menjadi sumber keuntungan besar sekaligus kontribusi nyata bagi lingkungan. Saatnya beralih dari sekadar “jual pupuk” menjadi pionir pupuk hijau masa depan.

Hubungi Kami

Tertarik memulai usaha pupuk organik instan berbasis zeolit atau butuh pasokan zeolit berkualitas tinggi? Hubungi PT Karunia Jaya Raksa:

Referensi

  1. FAO. (2019). Sustainable Agriculture and Mineral Resources.
  2. IPB University. (2021). Studi Aplikasi Zeolit pada Pupuk Organik.
  3. Universitas Gadjah Mada. (2020). Pengaruh Zeolit terhadap Efisiensi Pupuk Organik.
  4. Journal of Environmental Management. (2021). “Zeolite-based Organic Fertilizers”.
  5. Asian Journal of Agriculture. (2022). “Market Growth of Organic Fertilizers in Southeast Asia”.

#Zeolit #PupukOrganikInstan #BisnisHijau #PertanianBerkelanjutan #OrganicFarming #AgribusinessOpportunity

Monday, 26 July 2010

Go Organik 2010 Tidak Mencapai Target

Photo Granular Organik 2-5 mm produksi PT Khatulistiwa Hijau Prima


Sejak 5 tahun yang lalu Pemerintah telah mencanangkan go organik tahun 2010. Visinya pada tahun 2010 diharapkan Indonesia mampu menjadi produsen pangan organik terkemuka di dunia. Melihat perkembangannya yang sudah hampir memasuki tahun 2010, nampaknya target go organik tahun 2010 bisa dipastikan tidak tercapai. Untuk itu perlu dibuat target baru, yang harus diimbangi dengan sistematika pencapaian yang realistis, dan pemerintah harus membuat roadmap lagi. Masyarakat Pertanian Organik Indonesia (Maporina) bersedia menjadi partner pemerintah untuk menyusun roadmap baru tersebut

Dr. Zaenal Soedjais, Ketua Umum Maporina kepada Business News mengatakan, lahan pertanian kita yang sudah memakai pupuk organik kecil sekali baru sekitar 40.000 ha-60.000 ha. Untuk meningkatkan pemakaian pupuk organik, kuncinya adalah harus bisa meyakinkan petani. Artinya pemerintah bersama masyarakat pertanian organik harus melakukan sosialisasi kepada petani, sampai petani sadar betul akan manfaat penggunaan pupuk organik bagi pembangunan pertanian berkelanjutan berwawasan lingkungan.

Kalau ingin mendorong petani mengurangi pemakaian pupuk kimia, solusi yang bisa segera dilakukan adalah memacu petani berpikir mencari pupuk alternatif/organik yang harganya murah guna menstubtitusi pemakaian pupuk kimia. Untuk itu harga pupuk kimia secara bertahap harus dinaikkan hingga mencapai harga nonsubsidi, sehingga di mata petani harga pupuk kimia menjadi mahal, kemudian petani dipaksa berpikir mengurangi pemakaian pupuk kimia. Upaya lain adalah menyadarkan petani secara paksa harus memakai pupuk organik, dengan cara menghambat penyaluran pupuk kimia, sehingga diharapkan dapat mempercepat transformasi pemakaian pupuk organik secara massal.

Selain faktor kesadaran petani dalam memakai pupuk organik masih rendah, faktor lainnya yang menyebabkan tidak tercapainya target go organik tahun 2010 adalah jumlah produksi pupuk organik secara nasional masih kecil, belum mencukupi kebutuhan petani. Untuk meningkatkan produksi pupuk organik secara nasional, pemerintah diminta terus mendorong pembangunan pabrik pupuk organik dengan memberikan berbagai insentif. Insentif tidak lagi diberikan dalam bentuk subidi harga. Artinya harga pupuk organik dilepas menurut mekanisme pasar, dan pupuk organik tidak perlu disubsidi lagi.

Selain mendorong tumbuhnya industri pupuk organik skala kecil di sentra-sentra pertanian untuk memenuhi kebutuhan wilayahnya, pemerintah diminta memberikan bimbingan teknis kepada para petani untuk mengembangkan sendiri produksi pupuk organik. Dalam mengembangkan industri pupuk organik tersebut petani harus diberi insentif berupa kredit dengan bunga sangat murah, pada waktu petani membangun pabrik pupuk organik beberapa fasilitas infrastruktur yang diperlukan supaya dibiayai oleh pemerintah. Apabila ada peralatan pabrik yang diimpor, hendaknya pemerintah membebaskan bea masuknya, dan PPN-nya supaya ditanggung pemerintah. Dengan demikian petani tetap mendapatkan subsidi dengan cara yang berbeda.

Kebijakan pemerintah yang dilakukan sekarang dengan memberikan subsidi harga pupuk organik melalui BUMN industri pupuk dan BUMN PT Sang Hyang Seri dan PT Pertani, dinilai tidak bisa mencakup semua pabrik pupuk organik, hanya sebagian kecil saja yang menikmati subsidi. Mekanisme pemberian subsidi pupuk organik seperti itu tidak adil, karena produsen pupuk organik yang kecil-kecil, bahkan pupuk organik yang dibikin sendiri oleh petani, akhirnya tidak dihargai, dan yang mendapat subsidi hanya pabrik pupuk organik yang besar-besar saja.

Maporina mengamati kebijakan memberikan subsidi melalui pupuk organik menimbulkan "moral haza rt". Pemerintah membeli pupuk organik Rpl.500/kg, kemudian dijual kepada petani Rp500/ kg. Namun apabila ada petani yang tercantum dalam daftar Rencana Definitif Kebutuhan Kelompok (RDKK) tidak/belum mau memakai pupuk organik, mereka dipaksa menandatangani bukti penerimaan barang fiktif, dan diberi imbalan berupa bagian uang subsidi Rp500,-/kg. Sisa subsidi lainnya dibagi-bagi kepada petugas lapangan yang menyalurkan pupuk organik bersubsidi. Kemudian pupuk organik yang secara fisik tidak diterima petani tersebut, dibawa keliling lagi dijadikan pupuk organik bersubsidi dan disalurkan lagi kepada petani yang lain. Alasan petani tidak mau memakai pupuk organik, karena dia merasa tidak yakin pupuk organik dapat meningkatkan produksi. Petani umumnya masih lebih yakin memakai pupuk kimia yang dapat meningkatkan produksi.

Belakangan ini beberapa industri pupuk organik mulai terasa kekurangan bahan baku dari kotoran hewan. Penyebabnya jumlah ternak sapi dan ayam yang dipelihara yang dapat menghasilkan kotoran hewan tidak sebanding dengan jumlah kebutuhan bahan baku industri pupuk organik. Kalau bahan baku pupuk organik yang berasal dari kotoran hewan tidak mencukupi, Maporina mengusulkan agar industri pupuk organik memanfaatkan sisa-sisa limbah pertanian seperti jerami, dan dedaunan lainnya. Untuk memperbesar produksi pupuk organik dari limbah pertanian, petani harus dibantu memiliki alat pencacah jerami, kemudian jerami difermentasi dicampur dengan microba agar cepat membusuk. Limbah pertanian tersebut diolah sedikit dan ditambah bio-fertilizer, sudah menjadi pupuk organik, kemudian dikembalikan ke tanah menjadi sumber hara yang sangat bermanfaat untuk menyuburkan tanah pertanian. Proses tersebut dinamakan eco-farming, suatu sistem pertanian yang mempunyai kepedulian menjaga ekologi sekitarnya. Proses tersebut merupakan siklus yang berkelanjutan, tidak terpotong-potong dan alamiah. Kalau proses ini bisa dijalankan indah sekali, karena tidak ada pembakaran jerami/limbah pertanian, sehingga cuaca bersih dan tidak terjadi polusi.

Sumber : http://bataviase.co.id/detailberita-10410831.html

Sunday, 25 July 2010

Mau Jadi Profesional atau Entrepreneur ?






Saya pernah di tanya oleh someone, pertanyaannya sepele cuma "Mau Jadi Profesional atau Entrepreneur ?" He..he... cuma kepikiran juga deh, akhirnya browsing di mbah google. Hasilnya di rangkum :)




" Seorang profesional adalah seseorang yang menawarkan jasa atau layanan sesuai dengan protokol dan peraturan dalam bidang yang dijalaninya dan menerima gaji sebagai upah atas jasanya. Orang tersebut juga merupakan anggota suatu entitas atau organisasi yang didirikan seusai dengan hukum di sebuah negara atau wilayah. Meskipun begitu, seringkali seseorang yang merupakan ahli dalam suatu bidang juga disebut "profesional" dalam bidangnya meskipun bukan merupakan anggota sebuah entitas yang didirikan dengan sah. Sebagai contoh, dalam dunia olahraga terdapat olahragawan profesional yang merupakan kebalikan dari olahragawan amatir yang bukan berpartisipasi dalam sebuah turnamen/kompetisi demi uang."
Sumber : http://id.wikipedia.org/wiki/Profesional

Kesimpulannya :

  1. Profesi merupakan suatu jabatan atau pekerjaan yang menuntut keahlian atau keterampilan dari pelakunya.
  2. Profesional adalah orang yang menyandang suatu jabatan atau pekerjaan yang dilakukan dengan keahlian atau keterampilan yang tinggi. Hal ini juga pengaruh terhadap penampilan atau performance seseorang dalam melakukan pekerjaan di profesinya.
  3. Profesionalisme merupakan komitmen para anggota suatu profesi untuk meningkatkan kemampuannya secara terus menerus.
  4. Profesionalisasi adalah proses atau perjalanan waktu yang membuat seseorang atau kelompok orang menjadi profesional.
  5. Profesionalitas merupakan sikap para anggota profesi benar2 menguasai, sungguh2 kepada profesinya.

Kenapa saya berikan penjelasan singkat ttg 5 istilah di atas? Karena terus terang saya sendiri sering mendengar n menyebut kata2 itu tapi bingung juga apa beda atau pengertian yang sebenarnya,hehehehe…

Kembali ke pertanyaan diatas,

" An entrepreneur is a person who has possession of a new enterprise, venture or idea and assumes significant accountability for the inherent risks and the outcome.The term is originally a loanword from French and was first defined by the Irish economist Richard Cantillon. Entrepreneur in English is a term applied to the type of personality who is willing to take upon herself or himself a new venture or enterprise and accepts full responsibility for the outcome. Jean-Baptiste Say, a French economist is believed to have coined the word "entrepreneur" first in about 1800. He said an entrepreneur is "one who undertakes an enterprise, especially a contractor, acting as intermediatory between capital and labour."

Sumber: http://en.wikipedia.org/wiki/Entrepreneur

Konsep entrepreneurship (kewirausahaan) memiliki arti yang luas. Salah satunya, entrepreneur adalah seseorang yang memiliki kecakapan tinggi dalam melakukan perubahan, memiliki karakteristik yang hanya ditemukan sangat sedikit dalam sebuah populasi. Definisi lainnya adalah seseorang yang ingin bekerja untuk dirinya.

Kata entrepreneur berasal dari kata Prancis, entreprendre, yang berarti berusaha. Dalam konteks bisnis, maksudnya adalah memulai sebuah bisnis. Kamus Merriam-Webster menggambarkan definisi entrepreneur sebagai seseorang yang mengorganisir, memenej, dan menanggung risiko sebuah bisnis atau usaha.

Definisi entrepreneurship dari Ekonom Austria Joseph Schumpeter menekankan pada inovasi, seperti:

- produk baru

- metode produksi baru

- pasar baru

- bentuk baru dari organisasi

Kemakmuran tercipta ketika inovasi-inovasi tersebut menghasilkan permintaan baru. Dari sudut pandang ini, dapat didefinisikan fungsi entrepreneur sebagai mengkombinasikan berbagai faktor input dengan cara inovatif untuk menghasilkan nilai bagi konsumen dengan harapan nilai tersebut melebihi biaya dari faktor-faktor input, sehingga menghasilkan pemasukan lebih tinggi dan berakibat terciptanya kemakmuran/kekayaan.

Beda Entrepreneurship dan Usaha Kecil

Banyak orang menggunakan istilah entrepreneur dan pemilik usaha kecil bersamaan. Meskipun mungkin memiliki banyak kesamaan, ada perbedaan signifikan antara keduanya, dalam hal:

  1. Jumlah kekayaan yang tercipta — usaha entrepreneurship menciptakan kekayaan secara substansial, bukan sekedar arus pendapatan yang menggantikan upah tradisional.
  2. Kecepatan mendapatkan kekayaan — sementara bisnis kecil yang sukses dapat menciptakan keuntungan dalam jangka waktu yang panjang, entrepreneur menciptakan kekayaan dalam waktu lebih singkat, misalnya 5 tahun.
  3. Risiko — risiko usaha entrepreneur tinggi; dengan insentif keuntungan pasti, banyak entrepreneur akan mengejar ide dan kesempatan yang akan mudah lepas.
  4. Inovasi — entrepreneurship melibatkan inovasi substansial melebihi usaha kecil. Inovasi ini menciptakan keunggulan kompetitif yang menghasilkan kemakmuran. Inovasi bisa dari produk atau jasa itu sendiri, atau dalam proses bisnis yang digunakan untuk menciptakan produk atau jasa.



Pernah mendengar istilah 1. karena keluarga mendapat pekerjaan? atau istilah 2. karena pekerjaan mendapat keluarga? bagi saya kalimat kedua lah yang sebaiknya kita lakukan. Maksudnya gini, kalimat pertama mengandung makna Ka Ka eN. Biasalah minta bantu om, tante, sepupu, kakek, cucu *ups! ngaco* pokoknya begitulah, karena ada bantuan dari orang2 terdekat sehingga kita bisa mendapatkan suatu pekerjaan. Parahnya lagi kalau ternyata kita *yang kerja krn dibantu klrg* tidak dapat bekerja secara profesional. Bikin malu!

Beda jauh dengan kalimat kedua, dengan usaha sendiri secara jujur bisa mendapatkan pekerjaan dan setelah bekerja ada kenalan2 baru yang otomatis menambah silaturahmi n akrab bagaikan keluarga. Nikmat bukan?!

Masih ada saja di kantor yang karyawannya tidak bekerja secara profesional dengan berbagai sebab. Yang lucunya mereka *oknum* memandang seseorang berdasarkan anak siapa, keturunan mana, dll. Uh, capek banget gaul dengan mereka yang punya pikiran gitu. Hari gini masih aja bawa2 nama keluarga. Lagipula gak penting anak siapa, yang penting kamu bisa kerja atau tidak? Saya pernah ketemu kasus begini, ada bawahan yang ternyata anak pejabat tingkat tinggi. Nah atasan nya itu malah lebih tunduk kepada bawahannya karena takut embel2 anak pejabat tadi. Takut dilaporkan ke bapak si bawahan kalo dia *atasan* tidak “baik2” ke bawahannya. GILEEEEEEEEEEEEE…! ntah gimana masa depan kantor tersebut.

Persoalan like/dislike juga menjadi persoalan dalam dunia kerja. Memang karakter dan sifat orang berbeda. Kadang ada yang cocok dan tidak. Wajar lah, namanya juga manusia. Untuk mengerjakan proyek tertentu dipilih2 orang yang satu “aliran” walo orang tersebut blm tentu bisa mengerjakan proyek. Masih ada orang lain yang lebih pantas untuk mengerjakan proyek, tp karena satu dah lain hal shg orang itu tidak dilibatkan.

Dari gambaran umum di atas, kadang shock melihat hal yang tidak seharusnya terjadi. Tapi memang terjadi. Nyata! Hal di atas tidak terjadi di seluruh kantor, hanya kantor2 tertentu saja.

Semestinya ini bukannya sesuatu yang mengherankan, semakin tua, kita semakin bijaksana. Kita hidup dan belajar, dan salah satu yang kita pelajari adalah menyeimbangkan emosi dan akal. Tetapi, pelajaran ini biasanya tenggelam, terkikis karena kadang2 bertentangan dengan tugas dan kerjanya realita.

Mengapa orang perlu profesionalitas dalam menjalankan pekerjaan? Yaaa..Karena tuntutan masyarakat inign mendapatkan pelayanan yang semakin meningkat mutunya untuk hasil yang lebih baik. Setiap profesi harus bisa menyesuaikan dengan permintaan masyarakat agar tidak “ditinggalkan”.

Woi... jadi ngelantur dech, so sekarang pertanyaan tersebut jawabanya ?

Wallahu’alam

Thursday, 22 July 2010

Clinoptilolite Zeolites

Use of Clinoptilolite Zeolites for Ammonia-N Transfer and Retention in Integrated Aquaculture Systems and for Improving Pond Water Quality before Discharge

Natural zeolites are aluminosilicate minerals found in volcanogenic sedimentary rocks worldwide (Mumpton, 1999). Natural zeolites possess several important properties including adsorption, cation-exchange, dehydration-rehydration, and catalysis. Considerable scientific research in the last few decades has identified broad applications for natural zeolites in construction materials, soil improvements for water and nutrient retention, treatment of water and wastewater for removal of heavy metals and nutrients, dietary supplements for farm-raised animals, health care, and other beneficial uses (Mumpton, 1999).
Appropriate Technology Research 5 (10ATR5)/Experiment/Thailand

Collaborating Institution
Asian Institute of Technology, Thailand
Amrit Bart

Michigan State University
Ted R. Batterson
Donald L. Garling
Christopher F. Knud-Hansen

Objectives
The ultimate goal of this proposed research is to adapt existing technologies using natural clinoptilolite zeolites to provide a more socially acceptable and efficient way to integrate animal manures in pond fertilization, conserve and recycle on-farm resources, and lessen environmental impacts.

Fertilization Efficiency Objectives
  1. Determine the relationship between ammonia absorption/saturation by clinoptilolite from fresh swine and liquefied chicken manures versus exposure time to the manures.
  2. Determine the rate of release of ammonia from ammonia-enriched clinoptilolite when used as a nitrogen fertilizer for stimulating natural food production in an outdoor aquaculture system.
  3. Determine the ability of clinoptilolite to moderate ammonia concentrations in a fertilized outdoor culture system.

Pond Water Discharge Objectives
  1. Evaluate the effectiveness of clinoptilolite for removing nitrogen and phosphorus from pond discharge.
  2. Evaluate the potential utility of nutrients reclaimed by clinoptilolite for recycling in pond fertilization.
Significance
Natural zeolites are aluminosilicate minerals found in volcanogenic sedimentary rocks worldwide (Mumpton, 1999). Natural zeolites possess several important properties including adsorption, cation-exchange, dehydration-rehydration, and catalysis. Considerable scientific research in the last few decades has identified broad applications for natural zeolites in construction materials, soil improvements for water and nutrient retention, treatment of water and wastewater for removal of heavy metals and nutrients, dietary supplements for farm-raised animals, health care, and other beneficial uses (Mumpton, 1999).

Clinoptilolite zeolites, (Na3K3)(Al6Si 30O72)•24H2O, are one of the 40+ types of naturally existing zeolites. Clinoptilolites possess a cation-exchange capability of about 2.25 meq g-1, and are able to exchange ammonium-N with sodium (Na) and potassium (K) (Mumpton, 1999). One gram of clinoptilolite can take in about 2.2 mg ammonium-N. This cation-exchange capability has been utilized effectively for terrestrial agriculture, where clinoptilolites are first saturated with ammonium-N and then incorporated into crop soils. In this way they act as a slow-release fertilizer, with plants able to extract the sequestered ammonia from the clinoptilolite (Barbarick and Pirela, 1984; Lewis et al., 1984; Dwairi, 1998). Not only does clinoptilolite improve nitrogen fertilization efficiencies, it also reduces nitrate leaching by inhibiting the nitrification of ammonium to nitrate (Perrin et al., 1998). Most of the manure-ammonia sequestered in the zeolite is unavailable to nitrifying bacteria because of the small (4-5 angstrom) pore size of the crystal lattice structure (Mumpton, 1999). Furthermore, clinoptilolites are also used for animal waste management. Clinoptilolites are replacing clays in the cat litter market, and are being used to create an odorless, nitrogen-rich compost from farm livestock manures.

The use of clinoptilolites in aquaculture has focused on ammonia removal for the aquarium industry and freshwater culture systems (Bower and Turner, 1982; Dryden and Weatherley, 1987). The research below, however, proposes an analogous use of clinoptilolite for aquaculture as currently used for terrestrial agriculture and animal waste management: i.e., as a vehicle for ammonia absorption and subsequent fertilization to stimulate algal productivity.

Applying clinoptilolite technologies for livestock-fish integrated systems should improve sustainability by increasing nutrient utilization efficiencies while reducing undesirable farm outputs. Most of the nitrogen entering a farm as animal feeds ends up as ammonia in manure, which is either volatilized creating noxious odors or leached out as nitrate. By capturing this ammonia-N before it gets either volatilized or nitrified, and using that nitrogen to promote algal productivity in ponds, the farmer not only improves the farm environment by reducing noxious odors and nitrate leaching, but recycles an otherwise lost nutrient for increased farm productivity. Incorporating clinoptilolite with fresh animal manures may also improve the social acceptability of integrated aquaculture.

Furthermore, by transferring ammonia from animal manures to clinoptilolite, and then applying the ammonia-enriched clinoptilolite to ponds, the farmer can fertilize ponds with manure-N without adding additional BOD (biochemical oxygen demand). The major environmental risk of adding manure to ponds is the creation of anoxic conditions in the water. Research clearly shows that both algal and fish productivity can be quite high in ponds without the risk of pond water deoxygenation if no additional organic matter is added (Knud-Hansen et al., 1993). Using clinoptilolite to transfer manure ammonia turns animal manure into a source of inorganic nitrogen, and should eliminate associated risks of adding manures to ponds.

Clinoptilolites are also increasingly being used for wastewater treatment (Holman and Hopping, 1980; Ciambelli et al., 1985). For example, 18 municipal wastewater treatment facilities in Brisbane and other cities in Australia use zeolites for ammonia removal and for the flocculation, settling, and removal of phosphates in domestic wastewater (Oláh et al., 1989; Charuckyj, 1997). The research proposed below is a simple application of this existing clinoptilolite technology for cleaning pond water before being discharged into streams and canals. By removing soluble nitrogen and phosphorus before discharge, receiving waters are at less risk of eutrophication. By capturing these nutrients, they can be recycled back into ponds for stimulating algal productivity. Nutrients which would otherwise be lost from the farming system and degrade surrounding environments are instead recycled to increase farm productivity. Furthermore, clinoptilolites are renewable, since regeneration can be simply accomplished through heating or immersion in a salt solution. And since clinoptilolites are natural, inert, do not degrade, and even used in animal feeds (Pond and Yen 1984), they have no associated environmental risks.

Quantified Anticipated Benefits
Anticipated benefits are discussed generally above in the "Significance" section. More specifically, anticipated benefits to the farmer will be:
  1. Economic savings with reduced need for purchasing additional fertilizers through the retention and recycling of nutrients on farm;
  2. Improved quality of life with reduction of noxious odors from animal manures;
  3. Reduced risk of deoxygenation of ponds when integrating animal manures with pond aquaculture; and
  4. Economic savings if there are legal liabilities associated with downstream impacts from pond water discharges, particularly from intensive aquaculture systems.
And to the community:

  1. Improved quality of life and social acceptability with the reduction of noxious odors from animal manures and
  2. Reduced risk of environmental contamination and downstream eutrophication from ammonia volatilization, nutrient leaching, and pond water discharge.
Research Design
All research will take place at the Asian Institute of Technology (AIT), Thailand, within their Agriculture, Aquatic Systems and Engineering Program. Mr. Yuan Derun, a doctoral student within the graduate program, will be responsible for conducting the research under the direction of Dr. Knud-Hansen. The clinoptilolite to be used in all studies originates from Potosí, Mexico, and has an exchangeable K:Na ratio of about 8:1. Statistical analyses will include Analysis of Variance (ANOVA) for comparison of treatment means, and correlation and regression analyses for identifying relationships. The economic viabilities of the proposed clinoptilolite technologies for rural farming systems will also be evaluated as part of the overall research analysis.

Standard cost-benefit analysis at the farm level: costs include materials, time, labor, alternative sources of pond nutrients (i.e., fertilizers and manures), etc.; benefits include savings on fertilizer costs by recycling nutrients otherwise lost to the farming system, perhaps increased marketability of fish not raised directly on animal manures, etc. Economic analysis will focus on the potential for zeolite technology as applied for rural integrated farms in Thailand. Exact details will develop as the technology evolves through the proposed research.

  • Relationship between Clinoptilolite and Ammonia-N Absorption from Animal Manures
This relationship will be examined through a bench study. Crushed clinoptilolite (about 1-2 mm diameter grain size) will be contained in plastic mesh bags at approximately 1 kg clinoptilolite per bag, and immersed in buckets containing fresh swine and chicken manure. Water will be added as necessary to make the manure solution more liquid, which will facilitate the cation-exchange process between K and ammonium. The primary variable examined will be the length of time required to saturate the clinoptilolite with ammonium ions. Additional variables will be the effect of agitating the clinoptilolite bags on the speed of ammonia absorption, and calculating weight to weight relationships between the amount of clinoptilolite required versus the quantity and types of manure. Analytical measurements will be total Kjeldahl nitrogen of the manures before and after exposure to clinoptilolite, and ammonia-N retained in the clinoptilolite, which can be extracted through persulfate digestion.
  • Release of Ammonia from Ammonia-Enriched Clinoptilolite in a Fertilized Pond
The release of ammonia from clinoptilolite enriched with manure-ammonia will be examined both in a bench study and in an outdoor tank experiment. The bench study will be a preliminary evaluation of the ability of a mixed algal culture to extract ammonia from ammonia-enriched clinoptilolite, and examine the relationships between per cent ammonia saturation of clinoptilolite and algal biomass/productivity. The mixed algal culture will come from a fertilized pond and placed in 20-L buckets. Triple superphosphate (TSP) will be added to make algal productivity in the cultures N-limited. Clinoptilolite with a full range of percent ammonia saturation will be added to the containers. There will be a total of 10 different saturation levels in triplicate containers, with algae cultured outdoors for one week. Algal biomass will be determined daily from chlorophyll a measurements made with a hand-held fluorometer. Algal productivity will be determined by differences in dissolved oxygen measured by a hand-held dissolved oxygen meter measured at pre-dawn and mid-day. Ammonia-N will be measured in the clinoptilolite before and after the culture period, and in each container daily at mid-day.

Based on the results from the two bench studies described above, an 8-week grow-out experiment will be conducted in 2.5 m x 2.5 m x 1 m outdoor concrete tanks located at AIT. Nile tilapia fingerlings, about 10 g fish-1, will be stocked at 3 fish m-2. There will be a total of 13 treatments, with three replicate tanks (experimental units) per treatment assigned randomly in a completely randomized design. Nine of the treatments will examine the transfer of ammonia-N from zeolite into tank water. There will be three different amounts of clinoptilolite enriched with ammonia from three different sources: swine manure, chicken manure, and concentrated solution of urea. The ammonia-enriched zeolite will be in plastic mesh bags (about 1 kg zeolite/bag), with the three different numbers of bags per treatment. With all of the above nine treatments, bags will be replaced weekly. The actual number and size of bags will be determined based on results from the preliminary bench studies described above.

TSP will be added to all tanks at about 1.0 g TSP-P m-2 wk-1 to provide enough soluble P to prevent P-limitation of algal productivity. The last four treatments will be a dose-response evaluation of clinoptilolite's ability to moderate ammonia concentrations in culture water. One treatment will have no bags of clinoptilolite, while the other three will have increasing numbers of bags. All four treatments will be fertilized with urea at 3.0 g urea-N m-2 wk-1 and 1.0 g TSP-P m-2 wk-1. These fertilization rates correspond to rates established by previous MSU/AIT research found to be very productive without excessive fertilization. The treatment without any bags will serve as the control for the other 12 treatments. Changes in algal biomass will be monitored weekly with a hand-held fluorometer which measures chlorophyll a, net algal productivities will be monitored weekly by diel changes in dissolved oxygen, tilapia growth will be measured at the start and end of the grow-out experiment by length and weight measurements. Mid-afternoon water temperatures, turbidities, and ammonia-N will be monitored weekly in all 39 tanks.

  • Reclamation of Nutrients from Pond Water Discharge
Twenty tanks used in the grow-out experiment will be selected for their wide range of chlorophyll a and ammonia-N concentrations, and drained through clinoptilolite filters. Twenty clinoptilolite flow-through filters will be made from the 20-L buckets used in the bench studies. Assuming that 1 g of clinoptilolite can remove 2 mg of ammonia-N, then a tank with about 1 mg L-1 ammonia-N would require approximately 3 kg clinoptilolite. All 20 filters will contain identical quantities of clinoptilolite, the actual amount to be based on results of the preliminary bench studies and actual ammonia-N concentrations. The two factors will be the addition of clinoptilolite powder (CP, about 0.8 mm) to 10 tanks to flocculate P before going through the filter, and either "slow" or "fast" discharge flow rates. Actual pump rates will be determined on site. Therefore, this will be 2 ¥ 2 factorial designed experiment, with four treatments (i.e., CP-slow, no CP-slow, CP-fast, no CP-fast), with five replicates per treatment. Filter efficiencies will be determined by measurements of total P, soluble P, ammonia-N, nitrate-nitrite-N, and Kjeldahl-N before and after filtration.

Regional Integrations
AIT also has a well-established Training and Consultancy Unit which gives regional workshops on various aspects of aquaculture production systems. The knowledge generated from the proposed research can be readily incorporated into the appropriate workshop(s). There will also be five regional workshops on using pond dynamics to promote sustainable aquaculture included as a separate activity in this proposal. In addition to AIT, the other workshop locations will be at aquaculture research institutes and stations located at Bangladesh, Cambodia, Laos, and Vietnam where AIT and the PD/A CRSP have established formal relationships. Information generated from the above research will be incorporated into these proposed workshops. Strengthening ties between these countries and AIT and the PD/A CRSP is an important component of the Regional Plan For Southeast Asia.

Schedule
All proposed research is scheduled to take place between January and May 2002. Knud-Hansen will make two trips to AIT, of approximately three weeks each (excluding periods away from AIT to give workshops). During the first trip the bench studies on ammonia absorption by clinoptilolite and subsequent release into culture water will take place, and the grow-out study initiated. During the second trip the grow-out study will be completed and the nutrient reclamation study on pond water discharge will be conducted. Final report will be submitted no later than 31 July 2002.

Literature Cited
Barbarick, K.A., and H.J. Pirela, 1984. Agronomic and horticultural uses of zeolites: a review. In: W.G. Pond and F.A. Mumpton (Editors), Zeo-agriculture: Use of Natural Zeolites in Agriculture and Aquaculture. Westview Press, Boulder, Colorado, pp. 93¬103.

Bower, C.E., and D.T. Turner, 1982. Ammonia removal by clinoptilolite in the transport of ornamental fresh-water fishes. Progressive Fish-Culturist, 44(1):19¬23.

Charuckyj, L., 1997. Brisbane water zeoflocc performance report. Zeoflocc process selected by Queensland government. Zeolite Australia Ltd., Brisbane.

Ciambelli, P., P. Corbo, C. Porcelli, and A. Rimoli, 1985. Ammonia removal from wastewater by natural zeolites. I. Ammonium ion exchange properties of an Italian phillipsite tuff. Zeolites, 5(3):184¬187.

Dryden, H.T. and L.R. Weatherley, 1987. Aquaculture water treatment by ion-exchange: I. Capacity of Hector clinoptilolite at 0.01-0.05N. Agricultural Engineering, 6:39¬50.

Dwairi, I.M., 1998. Evaluation of Jordanian zeolite tuff as a controlled slow-release fertilizer for NH4+. Environmental Geology, 34(1):1¬4.

Holman, W.F. and W.D. Hopping, 1980. Treatability of type A zeolite in wastewater, II. Journal of Water Pollution Control Federation, 52:2887¬2905.

Knud-Hansen, C.F., T.R. Batterson, and C.D. McNabb, 1993. The role of chicken manure in the production of Nile tilapia (Oreochromis niloticus). Aquaculture and Fisheries Management, 24:483¬493.

Lewis, M.D., F.D. Moore, 3rd, and K.L. Goldsberry, 1984. Ammonium-exchanged clinoptilolite and granulated clinoptilolite with urea as nitrogen fertilizers. In: W.G. Pond and F.A. Mumpton (Editors), Zeo-agriculture: Use of Natural Zeolites in Agriculture and Aquaculture. Westview Press, Boulder, Colorado, pp. 105¬111.

Mumpton, F.A., 1999. La roca majica: Uses of natural zeolites in agriculture and industry. Proceedings of the National Academy of Science, USA, 96:3463¬3470.

Oláh, J., J. Papp, Á. Mészáros-Kiss, G. Mucsy, and D. Kalló, 1989. Simultaneous separation of suspended solids, ammonium and phosphate ion from wastewater by modified clinoptilolite. Stud. Surf. Sci. Catal., 46:711¬719.

Perrin, T.S., J.L. Boettinger, D.T. Drost, and J.M. Norton, 1998. Decreasing nitrogen leaching from sandy soil with ammonium-loaded clinoptilolite. Journal of Environmental Quality, 27:656¬663.

Pond, W.G., and J.-T. Yen, 1984. Physiological effects of clinoptilolite and synthetic zeolite A in animals. In: W.G. Pond and F.A. Mumpton (Editors), Zeo-agriculture: Use of Natural Zeolites in Agriculture and Aquaculture. Westview Press, Boulder, Colorado, pp. 127¬142.

Surce : http://pdacrsp.oregonstate.edu/pubs/workplns/wp_10/10ATR5.html

Share

Twitter Delicious Facebook Digg Stumbleupon Favorites More