ZEOLIT, SI MURAH BERKHASIAT TINGGI UNTUK KEBUN SAWIT

Penelitian aplikasi zeolit dilakukan pada pembibitan kelapa sawit untuk mengetahui pengaruhnya terhadap medium tanam dan pertumbuhan serta serapan hara bibit kelapa sawit ....Readmore

MANFAAT ZEOLITE PADA TANAH, TANAMAN, TERNAK DAN TAMBAK

Dengan majunya penemuan teknologi, zeolite disebut dengan nama mineral serba guna, karena fungsinya yang sangat beraneka ragam, .... Readmore

NATURAL ZEOLITE FOR RADIATION PROTECTION

Toxic nuclear radiation is being spread all around our world due to many reactors malfunctioning or spilling their deadly load into the environment. Radiation can .... Readmore

MEMBUAT FILTER AIR SEDERHANA DENGAN ZEOLITE

Air merupakan kebutuhan yang sangat vital bagi kehidupan manusia. Karena itu jika kebutuhan akan air tersebut belum tercukupi maka dapat memberikan dampak .... Readmore

TZP Plus (Soil Conditioner)

Solusi memperbaiki lahan, meningkatkan produksi dan kualitas hasil pertanian. Terdaftar.....Readmore.

1:1 Traffic Exchange Yibbida operates a 1:1 traffic exchange system that is consistently generating web site traffic.

Monday 26 July 2010

Go Organik 2010 Tidak Mencapai Target

Photo Granular Organik 2-5 mm produksi PT Khatulistiwa Hijau Prima


Sejak 5 tahun yang lalu Pemerintah telah mencanangkan go organik tahun 2010. Visinya pada tahun 2010 diharapkan Indonesia mampu menjadi produsen pangan organik terkemuka di dunia. Melihat perkembangannya yang sudah hampir memasuki tahun 2010, nampaknya target go organik tahun 2010 bisa dipastikan tidak tercapai. Untuk itu perlu dibuat target baru, yang harus diimbangi dengan sistematika pencapaian yang realistis, dan pemerintah harus membuat roadmap lagi. Masyarakat Pertanian Organik Indonesia (Maporina) bersedia menjadi partner pemerintah untuk menyusun roadmap baru tersebut

Dr. Zaenal Soedjais, Ketua Umum Maporina kepada Business News mengatakan, lahan pertanian kita yang sudah memakai pupuk organik kecil sekali baru sekitar 40.000 ha-60.000 ha. Untuk meningkatkan pemakaian pupuk organik, kuncinya adalah harus bisa meyakinkan petani. Artinya pemerintah bersama masyarakat pertanian organik harus melakukan sosialisasi kepada petani, sampai petani sadar betul akan manfaat penggunaan pupuk organik bagi pembangunan pertanian berkelanjutan berwawasan lingkungan.

Kalau ingin mendorong petani mengurangi pemakaian pupuk kimia, solusi yang bisa segera dilakukan adalah memacu petani berpikir mencari pupuk alternatif/organik yang harganya murah guna menstubtitusi pemakaian pupuk kimia. Untuk itu harga pupuk kimia secara bertahap harus dinaikkan hingga mencapai harga nonsubsidi, sehingga di mata petani harga pupuk kimia menjadi mahal, kemudian petani dipaksa berpikir mengurangi pemakaian pupuk kimia. Upaya lain adalah menyadarkan petani secara paksa harus memakai pupuk organik, dengan cara menghambat penyaluran pupuk kimia, sehingga diharapkan dapat mempercepat transformasi pemakaian pupuk organik secara massal.

Selain faktor kesadaran petani dalam memakai pupuk organik masih rendah, faktor lainnya yang menyebabkan tidak tercapainya target go organik tahun 2010 adalah jumlah produksi pupuk organik secara nasional masih kecil, belum mencukupi kebutuhan petani. Untuk meningkatkan produksi pupuk organik secara nasional, pemerintah diminta terus mendorong pembangunan pabrik pupuk organik dengan memberikan berbagai insentif. Insentif tidak lagi diberikan dalam bentuk subidi harga. Artinya harga pupuk organik dilepas menurut mekanisme pasar, dan pupuk organik tidak perlu disubsidi lagi.

Selain mendorong tumbuhnya industri pupuk organik skala kecil di sentra-sentra pertanian untuk memenuhi kebutuhan wilayahnya, pemerintah diminta memberikan bimbingan teknis kepada para petani untuk mengembangkan sendiri produksi pupuk organik. Dalam mengembangkan industri pupuk organik tersebut petani harus diberi insentif berupa kredit dengan bunga sangat murah, pada waktu petani membangun pabrik pupuk organik beberapa fasilitas infrastruktur yang diperlukan supaya dibiayai oleh pemerintah. Apabila ada peralatan pabrik yang diimpor, hendaknya pemerintah membebaskan bea masuknya, dan PPN-nya supaya ditanggung pemerintah. Dengan demikian petani tetap mendapatkan subsidi dengan cara yang berbeda.

Kebijakan pemerintah yang dilakukan sekarang dengan memberikan subsidi harga pupuk organik melalui BUMN industri pupuk dan BUMN PT Sang Hyang Seri dan PT Pertani, dinilai tidak bisa mencakup semua pabrik pupuk organik, hanya sebagian kecil saja yang menikmati subsidi. Mekanisme pemberian subsidi pupuk organik seperti itu tidak adil, karena produsen pupuk organik yang kecil-kecil, bahkan pupuk organik yang dibikin sendiri oleh petani, akhirnya tidak dihargai, dan yang mendapat subsidi hanya pabrik pupuk organik yang besar-besar saja.

Maporina mengamati kebijakan memberikan subsidi melalui pupuk organik menimbulkan "moral haza rt". Pemerintah membeli pupuk organik Rpl.500/kg, kemudian dijual kepada petani Rp500/ kg. Namun apabila ada petani yang tercantum dalam daftar Rencana Definitif Kebutuhan Kelompok (RDKK) tidak/belum mau memakai pupuk organik, mereka dipaksa menandatangani bukti penerimaan barang fiktif, dan diberi imbalan berupa bagian uang subsidi Rp500,-/kg. Sisa subsidi lainnya dibagi-bagi kepada petugas lapangan yang menyalurkan pupuk organik bersubsidi. Kemudian pupuk organik yang secara fisik tidak diterima petani tersebut, dibawa keliling lagi dijadikan pupuk organik bersubsidi dan disalurkan lagi kepada petani yang lain. Alasan petani tidak mau memakai pupuk organik, karena dia merasa tidak yakin pupuk organik dapat meningkatkan produksi. Petani umumnya masih lebih yakin memakai pupuk kimia yang dapat meningkatkan produksi.

Belakangan ini beberapa industri pupuk organik mulai terasa kekurangan bahan baku dari kotoran hewan. Penyebabnya jumlah ternak sapi dan ayam yang dipelihara yang dapat menghasilkan kotoran hewan tidak sebanding dengan jumlah kebutuhan bahan baku industri pupuk organik. Kalau bahan baku pupuk organik yang berasal dari kotoran hewan tidak mencukupi, Maporina mengusulkan agar industri pupuk organik memanfaatkan sisa-sisa limbah pertanian seperti jerami, dan dedaunan lainnya. Untuk memperbesar produksi pupuk organik dari limbah pertanian, petani harus dibantu memiliki alat pencacah jerami, kemudian jerami difermentasi dicampur dengan microba agar cepat membusuk. Limbah pertanian tersebut diolah sedikit dan ditambah bio-fertilizer, sudah menjadi pupuk organik, kemudian dikembalikan ke tanah menjadi sumber hara yang sangat bermanfaat untuk menyuburkan tanah pertanian. Proses tersebut dinamakan eco-farming, suatu sistem pertanian yang mempunyai kepedulian menjaga ekologi sekitarnya. Proses tersebut merupakan siklus yang berkelanjutan, tidak terpotong-potong dan alamiah. Kalau proses ini bisa dijalankan indah sekali, karena tidak ada pembakaran jerami/limbah pertanian, sehingga cuaca bersih dan tidak terjadi polusi.

Sumber : http://bataviase.co.id/detailberita-10410831.html

Sunday 25 July 2010

Mau Jadi Profesional atau Entrepreneur ?






Saya pernah di tanya oleh someone, pertanyaannya sepele cuma "Mau Jadi Profesional atau Entrepreneur ?" He..he... cuma kepikiran juga deh, akhirnya browsing di mbah google. Hasilnya di rangkum :)




" Seorang profesional adalah seseorang yang menawarkan jasa atau layanan sesuai dengan protokol dan peraturan dalam bidang yang dijalaninya dan menerima gaji sebagai upah atas jasanya. Orang tersebut juga merupakan anggota suatu entitas atau organisasi yang didirikan seusai dengan hukum di sebuah negara atau wilayah. Meskipun begitu, seringkali seseorang yang merupakan ahli dalam suatu bidang juga disebut "profesional" dalam bidangnya meskipun bukan merupakan anggota sebuah entitas yang didirikan dengan sah. Sebagai contoh, dalam dunia olahraga terdapat olahragawan profesional yang merupakan kebalikan dari olahragawan amatir yang bukan berpartisipasi dalam sebuah turnamen/kompetisi demi uang."
Sumber : http://id.wikipedia.org/wiki/Profesional

Kesimpulannya :

  1. Profesi merupakan suatu jabatan atau pekerjaan yang menuntut keahlian atau keterampilan dari pelakunya.
  2. Profesional adalah orang yang menyandang suatu jabatan atau pekerjaan yang dilakukan dengan keahlian atau keterampilan yang tinggi. Hal ini juga pengaruh terhadap penampilan atau performance seseorang dalam melakukan pekerjaan di profesinya.
  3. Profesionalisme merupakan komitmen para anggota suatu profesi untuk meningkatkan kemampuannya secara terus menerus.
  4. Profesionalisasi adalah proses atau perjalanan waktu yang membuat seseorang atau kelompok orang menjadi profesional.
  5. Profesionalitas merupakan sikap para anggota profesi benar2 menguasai, sungguh2 kepada profesinya.

Kenapa saya berikan penjelasan singkat ttg 5 istilah di atas? Karena terus terang saya sendiri sering mendengar n menyebut kata2 itu tapi bingung juga apa beda atau pengertian yang sebenarnya,hehehehe…

Kembali ke pertanyaan diatas,

" An entrepreneur is a person who has possession of a new enterprise, venture or idea and assumes significant accountability for the inherent risks and the outcome.The term is originally a loanword from French and was first defined by the Irish economist Richard Cantillon. Entrepreneur in English is a term applied to the type of personality who is willing to take upon herself or himself a new venture or enterprise and accepts full responsibility for the outcome. Jean-Baptiste Say, a French economist is believed to have coined the word "entrepreneur" first in about 1800. He said an entrepreneur is "one who undertakes an enterprise, especially a contractor, acting as intermediatory between capital and labour."

Sumber: http://en.wikipedia.org/wiki/Entrepreneur

Konsep entrepreneurship (kewirausahaan) memiliki arti yang luas. Salah satunya, entrepreneur adalah seseorang yang memiliki kecakapan tinggi dalam melakukan perubahan, memiliki karakteristik yang hanya ditemukan sangat sedikit dalam sebuah populasi. Definisi lainnya adalah seseorang yang ingin bekerja untuk dirinya.

Kata entrepreneur berasal dari kata Prancis, entreprendre, yang berarti berusaha. Dalam konteks bisnis, maksudnya adalah memulai sebuah bisnis. Kamus Merriam-Webster menggambarkan definisi entrepreneur sebagai seseorang yang mengorganisir, memenej, dan menanggung risiko sebuah bisnis atau usaha.

Definisi entrepreneurship dari Ekonom Austria Joseph Schumpeter menekankan pada inovasi, seperti:

- produk baru

- metode produksi baru

- pasar baru

- bentuk baru dari organisasi

Kemakmuran tercipta ketika inovasi-inovasi tersebut menghasilkan permintaan baru. Dari sudut pandang ini, dapat didefinisikan fungsi entrepreneur sebagai mengkombinasikan berbagai faktor input dengan cara inovatif untuk menghasilkan nilai bagi konsumen dengan harapan nilai tersebut melebihi biaya dari faktor-faktor input, sehingga menghasilkan pemasukan lebih tinggi dan berakibat terciptanya kemakmuran/kekayaan.

Beda Entrepreneurship dan Usaha Kecil

Banyak orang menggunakan istilah entrepreneur dan pemilik usaha kecil bersamaan. Meskipun mungkin memiliki banyak kesamaan, ada perbedaan signifikan antara keduanya, dalam hal:

  1. Jumlah kekayaan yang tercipta — usaha entrepreneurship menciptakan kekayaan secara substansial, bukan sekedar arus pendapatan yang menggantikan upah tradisional.
  2. Kecepatan mendapatkan kekayaan — sementara bisnis kecil yang sukses dapat menciptakan keuntungan dalam jangka waktu yang panjang, entrepreneur menciptakan kekayaan dalam waktu lebih singkat, misalnya 5 tahun.
  3. Risiko — risiko usaha entrepreneur tinggi; dengan insentif keuntungan pasti, banyak entrepreneur akan mengejar ide dan kesempatan yang akan mudah lepas.
  4. Inovasi — entrepreneurship melibatkan inovasi substansial melebihi usaha kecil. Inovasi ini menciptakan keunggulan kompetitif yang menghasilkan kemakmuran. Inovasi bisa dari produk atau jasa itu sendiri, atau dalam proses bisnis yang digunakan untuk menciptakan produk atau jasa.



Pernah mendengar istilah 1. karena keluarga mendapat pekerjaan? atau istilah 2. karena pekerjaan mendapat keluarga? bagi saya kalimat kedua lah yang sebaiknya kita lakukan. Maksudnya gini, kalimat pertama mengandung makna Ka Ka eN. Biasalah minta bantu om, tante, sepupu, kakek, cucu *ups! ngaco* pokoknya begitulah, karena ada bantuan dari orang2 terdekat sehingga kita bisa mendapatkan suatu pekerjaan. Parahnya lagi kalau ternyata kita *yang kerja krn dibantu klrg* tidak dapat bekerja secara profesional. Bikin malu!

Beda jauh dengan kalimat kedua, dengan usaha sendiri secara jujur bisa mendapatkan pekerjaan dan setelah bekerja ada kenalan2 baru yang otomatis menambah silaturahmi n akrab bagaikan keluarga. Nikmat bukan?!

Masih ada saja di kantor yang karyawannya tidak bekerja secara profesional dengan berbagai sebab. Yang lucunya mereka *oknum* memandang seseorang berdasarkan anak siapa, keturunan mana, dll. Uh, capek banget gaul dengan mereka yang punya pikiran gitu. Hari gini masih aja bawa2 nama keluarga. Lagipula gak penting anak siapa, yang penting kamu bisa kerja atau tidak? Saya pernah ketemu kasus begini, ada bawahan yang ternyata anak pejabat tingkat tinggi. Nah atasan nya itu malah lebih tunduk kepada bawahannya karena takut embel2 anak pejabat tadi. Takut dilaporkan ke bapak si bawahan kalo dia *atasan* tidak “baik2” ke bawahannya. GILEEEEEEEEEEEEE…! ntah gimana masa depan kantor tersebut.

Persoalan like/dislike juga menjadi persoalan dalam dunia kerja. Memang karakter dan sifat orang berbeda. Kadang ada yang cocok dan tidak. Wajar lah, namanya juga manusia. Untuk mengerjakan proyek tertentu dipilih2 orang yang satu “aliran” walo orang tersebut blm tentu bisa mengerjakan proyek. Masih ada orang lain yang lebih pantas untuk mengerjakan proyek, tp karena satu dah lain hal shg orang itu tidak dilibatkan.

Dari gambaran umum di atas, kadang shock melihat hal yang tidak seharusnya terjadi. Tapi memang terjadi. Nyata! Hal di atas tidak terjadi di seluruh kantor, hanya kantor2 tertentu saja.

Semestinya ini bukannya sesuatu yang mengherankan, semakin tua, kita semakin bijaksana. Kita hidup dan belajar, dan salah satu yang kita pelajari adalah menyeimbangkan emosi dan akal. Tetapi, pelajaran ini biasanya tenggelam, terkikis karena kadang2 bertentangan dengan tugas dan kerjanya realita.

Mengapa orang perlu profesionalitas dalam menjalankan pekerjaan? Yaaa..Karena tuntutan masyarakat inign mendapatkan pelayanan yang semakin meningkat mutunya untuk hasil yang lebih baik. Setiap profesi harus bisa menyesuaikan dengan permintaan masyarakat agar tidak “ditinggalkan”.

Woi... jadi ngelantur dech, so sekarang pertanyaan tersebut jawabanya ?

Wallahu’alam

Thursday 22 July 2010

Clinoptilolite Zeolites

Use of Clinoptilolite Zeolites for Ammonia-N Transfer and Retention in Integrated Aquaculture Systems and for Improving Pond Water Quality before Discharge

Natural zeolites are aluminosilicate minerals found in volcanogenic sedimentary rocks worldwide (Mumpton, 1999). Natural zeolites possess several important properties including adsorption, cation-exchange, dehydration-rehydration, and catalysis. Considerable scientific research in the last few decades has identified broad applications for natural zeolites in construction materials, soil improvements for water and nutrient retention, treatment of water and wastewater for removal of heavy metals and nutrients, dietary supplements for farm-raised animals, health care, and other beneficial uses (Mumpton, 1999).
Appropriate Technology Research 5 (10ATR5)/Experiment/Thailand

Collaborating Institution
Asian Institute of Technology, Thailand
Amrit Bart

Michigan State University
Ted R. Batterson
Donald L. Garling
Christopher F. Knud-Hansen

Objectives
The ultimate goal of this proposed research is to adapt existing technologies using natural clinoptilolite zeolites to provide a more socially acceptable and efficient way to integrate animal manures in pond fertilization, conserve and recycle on-farm resources, and lessen environmental impacts.

Fertilization Efficiency Objectives
  1. Determine the relationship between ammonia absorption/saturation by clinoptilolite from fresh swine and liquefied chicken manures versus exposure time to the manures.
  2. Determine the rate of release of ammonia from ammonia-enriched clinoptilolite when used as a nitrogen fertilizer for stimulating natural food production in an outdoor aquaculture system.
  3. Determine the ability of clinoptilolite to moderate ammonia concentrations in a fertilized outdoor culture system.

Pond Water Discharge Objectives
  1. Evaluate the effectiveness of clinoptilolite for removing nitrogen and phosphorus from pond discharge.
  2. Evaluate the potential utility of nutrients reclaimed by clinoptilolite for recycling in pond fertilization.
Significance
Natural zeolites are aluminosilicate minerals found in volcanogenic sedimentary rocks worldwide (Mumpton, 1999). Natural zeolites possess several important properties including adsorption, cation-exchange, dehydration-rehydration, and catalysis. Considerable scientific research in the last few decades has identified broad applications for natural zeolites in construction materials, soil improvements for water and nutrient retention, treatment of water and wastewater for removal of heavy metals and nutrients, dietary supplements for farm-raised animals, health care, and other beneficial uses (Mumpton, 1999).

Clinoptilolite zeolites, (Na3K3)(Al6Si 30O72)•24H2O, are one of the 40+ types of naturally existing zeolites. Clinoptilolites possess a cation-exchange capability of about 2.25 meq g-1, and are able to exchange ammonium-N with sodium (Na) and potassium (K) (Mumpton, 1999). One gram of clinoptilolite can take in about 2.2 mg ammonium-N. This cation-exchange capability has been utilized effectively for terrestrial agriculture, where clinoptilolites are first saturated with ammonium-N and then incorporated into crop soils. In this way they act as a slow-release fertilizer, with plants able to extract the sequestered ammonia from the clinoptilolite (Barbarick and Pirela, 1984; Lewis et al., 1984; Dwairi, 1998). Not only does clinoptilolite improve nitrogen fertilization efficiencies, it also reduces nitrate leaching by inhibiting the nitrification of ammonium to nitrate (Perrin et al., 1998). Most of the manure-ammonia sequestered in the zeolite is unavailable to nitrifying bacteria because of the small (4-5 angstrom) pore size of the crystal lattice structure (Mumpton, 1999). Furthermore, clinoptilolites are also used for animal waste management. Clinoptilolites are replacing clays in the cat litter market, and are being used to create an odorless, nitrogen-rich compost from farm livestock manures.

The use of clinoptilolites in aquaculture has focused on ammonia removal for the aquarium industry and freshwater culture systems (Bower and Turner, 1982; Dryden and Weatherley, 1987). The research below, however, proposes an analogous use of clinoptilolite for aquaculture as currently used for terrestrial agriculture and animal waste management: i.e., as a vehicle for ammonia absorption and subsequent fertilization to stimulate algal productivity.

Applying clinoptilolite technologies for livestock-fish integrated systems should improve sustainability by increasing nutrient utilization efficiencies while reducing undesirable farm outputs. Most of the nitrogen entering a farm as animal feeds ends up as ammonia in manure, which is either volatilized creating noxious odors or leached out as nitrate. By capturing this ammonia-N before it gets either volatilized or nitrified, and using that nitrogen to promote algal productivity in ponds, the farmer not only improves the farm environment by reducing noxious odors and nitrate leaching, but recycles an otherwise lost nutrient for increased farm productivity. Incorporating clinoptilolite with fresh animal manures may also improve the social acceptability of integrated aquaculture.

Furthermore, by transferring ammonia from animal manures to clinoptilolite, and then applying the ammonia-enriched clinoptilolite to ponds, the farmer can fertilize ponds with manure-N without adding additional BOD (biochemical oxygen demand). The major environmental risk of adding manure to ponds is the creation of anoxic conditions in the water. Research clearly shows that both algal and fish productivity can be quite high in ponds without the risk of pond water deoxygenation if no additional organic matter is added (Knud-Hansen et al., 1993). Using clinoptilolite to transfer manure ammonia turns animal manure into a source of inorganic nitrogen, and should eliminate associated risks of adding manures to ponds.

Clinoptilolites are also increasingly being used for wastewater treatment (Holman and Hopping, 1980; Ciambelli et al., 1985). For example, 18 municipal wastewater treatment facilities in Brisbane and other cities in Australia use zeolites for ammonia removal and for the flocculation, settling, and removal of phosphates in domestic wastewater (Oláh et al., 1989; Charuckyj, 1997). The research proposed below is a simple application of this existing clinoptilolite technology for cleaning pond water before being discharged into streams and canals. By removing soluble nitrogen and phosphorus before discharge, receiving waters are at less risk of eutrophication. By capturing these nutrients, they can be recycled back into ponds for stimulating algal productivity. Nutrients which would otherwise be lost from the farming system and degrade surrounding environments are instead recycled to increase farm productivity. Furthermore, clinoptilolites are renewable, since regeneration can be simply accomplished through heating or immersion in a salt solution. And since clinoptilolites are natural, inert, do not degrade, and even used in animal feeds (Pond and Yen 1984), they have no associated environmental risks.

Quantified Anticipated Benefits
Anticipated benefits are discussed generally above in the "Significance" section. More specifically, anticipated benefits to the farmer will be:
  1. Economic savings with reduced need for purchasing additional fertilizers through the retention and recycling of nutrients on farm;
  2. Improved quality of life with reduction of noxious odors from animal manures;
  3. Reduced risk of deoxygenation of ponds when integrating animal manures with pond aquaculture; and
  4. Economic savings if there are legal liabilities associated with downstream impacts from pond water discharges, particularly from intensive aquaculture systems.
And to the community:

  1. Improved quality of life and social acceptability with the reduction of noxious odors from animal manures and
  2. Reduced risk of environmental contamination and downstream eutrophication from ammonia volatilization, nutrient leaching, and pond water discharge.
Research Design
All research will take place at the Asian Institute of Technology (AIT), Thailand, within their Agriculture, Aquatic Systems and Engineering Program. Mr. Yuan Derun, a doctoral student within the graduate program, will be responsible for conducting the research under the direction of Dr. Knud-Hansen. The clinoptilolite to be used in all studies originates from Potosí, Mexico, and has an exchangeable K:Na ratio of about 8:1. Statistical analyses will include Analysis of Variance (ANOVA) for comparison of treatment means, and correlation and regression analyses for identifying relationships. The economic viabilities of the proposed clinoptilolite technologies for rural farming systems will also be evaluated as part of the overall research analysis.

Standard cost-benefit analysis at the farm level: costs include materials, time, labor, alternative sources of pond nutrients (i.e., fertilizers and manures), etc.; benefits include savings on fertilizer costs by recycling nutrients otherwise lost to the farming system, perhaps increased marketability of fish not raised directly on animal manures, etc. Economic analysis will focus on the potential for zeolite technology as applied for rural integrated farms in Thailand. Exact details will develop as the technology evolves through the proposed research.

  • Relationship between Clinoptilolite and Ammonia-N Absorption from Animal Manures
This relationship will be examined through a bench study. Crushed clinoptilolite (about 1-2 mm diameter grain size) will be contained in plastic mesh bags at approximately 1 kg clinoptilolite per bag, and immersed in buckets containing fresh swine and chicken manure. Water will be added as necessary to make the manure solution more liquid, which will facilitate the cation-exchange process between K and ammonium. The primary variable examined will be the length of time required to saturate the clinoptilolite with ammonium ions. Additional variables will be the effect of agitating the clinoptilolite bags on the speed of ammonia absorption, and calculating weight to weight relationships between the amount of clinoptilolite required versus the quantity and types of manure. Analytical measurements will be total Kjeldahl nitrogen of the manures before and after exposure to clinoptilolite, and ammonia-N retained in the clinoptilolite, which can be extracted through persulfate digestion.
  • Release of Ammonia from Ammonia-Enriched Clinoptilolite in a Fertilized Pond
The release of ammonia from clinoptilolite enriched with manure-ammonia will be examined both in a bench study and in an outdoor tank experiment. The bench study will be a preliminary evaluation of the ability of a mixed algal culture to extract ammonia from ammonia-enriched clinoptilolite, and examine the relationships between per cent ammonia saturation of clinoptilolite and algal biomass/productivity. The mixed algal culture will come from a fertilized pond and placed in 20-L buckets. Triple superphosphate (TSP) will be added to make algal productivity in the cultures N-limited. Clinoptilolite with a full range of percent ammonia saturation will be added to the containers. There will be a total of 10 different saturation levels in triplicate containers, with algae cultured outdoors for one week. Algal biomass will be determined daily from chlorophyll a measurements made with a hand-held fluorometer. Algal productivity will be determined by differences in dissolved oxygen measured by a hand-held dissolved oxygen meter measured at pre-dawn and mid-day. Ammonia-N will be measured in the clinoptilolite before and after the culture period, and in each container daily at mid-day.

Based on the results from the two bench studies described above, an 8-week grow-out experiment will be conducted in 2.5 m x 2.5 m x 1 m outdoor concrete tanks located at AIT. Nile tilapia fingerlings, about 10 g fish-1, will be stocked at 3 fish m-2. There will be a total of 13 treatments, with three replicate tanks (experimental units) per treatment assigned randomly in a completely randomized design. Nine of the treatments will examine the transfer of ammonia-N from zeolite into tank water. There will be three different amounts of clinoptilolite enriched with ammonia from three different sources: swine manure, chicken manure, and concentrated solution of urea. The ammonia-enriched zeolite will be in plastic mesh bags (about 1 kg zeolite/bag), with the three different numbers of bags per treatment. With all of the above nine treatments, bags will be replaced weekly. The actual number and size of bags will be determined based on results from the preliminary bench studies described above.

TSP will be added to all tanks at about 1.0 g TSP-P m-2 wk-1 to provide enough soluble P to prevent P-limitation of algal productivity. The last four treatments will be a dose-response evaluation of clinoptilolite's ability to moderate ammonia concentrations in culture water. One treatment will have no bags of clinoptilolite, while the other three will have increasing numbers of bags. All four treatments will be fertilized with urea at 3.0 g urea-N m-2 wk-1 and 1.0 g TSP-P m-2 wk-1. These fertilization rates correspond to rates established by previous MSU/AIT research found to be very productive without excessive fertilization. The treatment without any bags will serve as the control for the other 12 treatments. Changes in algal biomass will be monitored weekly with a hand-held fluorometer which measures chlorophyll a, net algal productivities will be monitored weekly by diel changes in dissolved oxygen, tilapia growth will be measured at the start and end of the grow-out experiment by length and weight measurements. Mid-afternoon water temperatures, turbidities, and ammonia-N will be monitored weekly in all 39 tanks.

  • Reclamation of Nutrients from Pond Water Discharge
Twenty tanks used in the grow-out experiment will be selected for their wide range of chlorophyll a and ammonia-N concentrations, and drained through clinoptilolite filters. Twenty clinoptilolite flow-through filters will be made from the 20-L buckets used in the bench studies. Assuming that 1 g of clinoptilolite can remove 2 mg of ammonia-N, then a tank with about 1 mg L-1 ammonia-N would require approximately 3 kg clinoptilolite. All 20 filters will contain identical quantities of clinoptilolite, the actual amount to be based on results of the preliminary bench studies and actual ammonia-N concentrations. The two factors will be the addition of clinoptilolite powder (CP, about 0.8 mm) to 10 tanks to flocculate P before going through the filter, and either "slow" or "fast" discharge flow rates. Actual pump rates will be determined on site. Therefore, this will be 2 ¥ 2 factorial designed experiment, with four treatments (i.e., CP-slow, no CP-slow, CP-fast, no CP-fast), with five replicates per treatment. Filter efficiencies will be determined by measurements of total P, soluble P, ammonia-N, nitrate-nitrite-N, and Kjeldahl-N before and after filtration.

Regional Integrations
AIT also has a well-established Training and Consultancy Unit which gives regional workshops on various aspects of aquaculture production systems. The knowledge generated from the proposed research can be readily incorporated into the appropriate workshop(s). There will also be five regional workshops on using pond dynamics to promote sustainable aquaculture included as a separate activity in this proposal. In addition to AIT, the other workshop locations will be at aquaculture research institutes and stations located at Bangladesh, Cambodia, Laos, and Vietnam where AIT and the PD/A CRSP have established formal relationships. Information generated from the above research will be incorporated into these proposed workshops. Strengthening ties between these countries and AIT and the PD/A CRSP is an important component of the Regional Plan For Southeast Asia.

Schedule
All proposed research is scheduled to take place between January and May 2002. Knud-Hansen will make two trips to AIT, of approximately three weeks each (excluding periods away from AIT to give workshops). During the first trip the bench studies on ammonia absorption by clinoptilolite and subsequent release into culture water will take place, and the grow-out study initiated. During the second trip the grow-out study will be completed and the nutrient reclamation study on pond water discharge will be conducted. Final report will be submitted no later than 31 July 2002.

Literature Cited
Barbarick, K.A., and H.J. Pirela, 1984. Agronomic and horticultural uses of zeolites: a review. In: W.G. Pond and F.A. Mumpton (Editors), Zeo-agriculture: Use of Natural Zeolites in Agriculture and Aquaculture. Westview Press, Boulder, Colorado, pp. 93¬103.

Bower, C.E., and D.T. Turner, 1982. Ammonia removal by clinoptilolite in the transport of ornamental fresh-water fishes. Progressive Fish-Culturist, 44(1):19¬23.

Charuckyj, L., 1997. Brisbane water zeoflocc performance report. Zeoflocc process selected by Queensland government. Zeolite Australia Ltd., Brisbane.

Ciambelli, P., P. Corbo, C. Porcelli, and A. Rimoli, 1985. Ammonia removal from wastewater by natural zeolites. I. Ammonium ion exchange properties of an Italian phillipsite tuff. Zeolites, 5(3):184¬187.

Dryden, H.T. and L.R. Weatherley, 1987. Aquaculture water treatment by ion-exchange: I. Capacity of Hector clinoptilolite at 0.01-0.05N. Agricultural Engineering, 6:39¬50.

Dwairi, I.M., 1998. Evaluation of Jordanian zeolite tuff as a controlled slow-release fertilizer for NH4+. Environmental Geology, 34(1):1¬4.

Holman, W.F. and W.D. Hopping, 1980. Treatability of type A zeolite in wastewater, II. Journal of Water Pollution Control Federation, 52:2887¬2905.

Knud-Hansen, C.F., T.R. Batterson, and C.D. McNabb, 1993. The role of chicken manure in the production of Nile tilapia (Oreochromis niloticus). Aquaculture and Fisheries Management, 24:483¬493.

Lewis, M.D., F.D. Moore, 3rd, and K.L. Goldsberry, 1984. Ammonium-exchanged clinoptilolite and granulated clinoptilolite with urea as nitrogen fertilizers. In: W.G. Pond and F.A. Mumpton (Editors), Zeo-agriculture: Use of Natural Zeolites in Agriculture and Aquaculture. Westview Press, Boulder, Colorado, pp. 105¬111.

Mumpton, F.A., 1999. La roca majica: Uses of natural zeolites in agriculture and industry. Proceedings of the National Academy of Science, USA, 96:3463¬3470.

Oláh, J., J. Papp, Á. Mészáros-Kiss, G. Mucsy, and D. Kalló, 1989. Simultaneous separation of suspended solids, ammonium and phosphate ion from wastewater by modified clinoptilolite. Stud. Surf. Sci. Catal., 46:711¬719.

Perrin, T.S., J.L. Boettinger, D.T. Drost, and J.M. Norton, 1998. Decreasing nitrogen leaching from sandy soil with ammonium-loaded clinoptilolite. Journal of Environmental Quality, 27:656¬663.

Pond, W.G., and J.-T. Yen, 1984. Physiological effects of clinoptilolite and synthetic zeolite A in animals. In: W.G. Pond and F.A. Mumpton (Editors), Zeo-agriculture: Use of Natural Zeolites in Agriculture and Aquaculture. Westview Press, Boulder, Colorado, pp. 127¬142.

Surce : http://pdacrsp.oregonstate.edu/pubs/workplns/wp_10/10ATR5.html

Share

Twitter Delicious Facebook Digg Stumbleupon Favorites More